期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
Extreme gradient boosting with Shapley Additive Explanations for landslide susceptibility at slope unit and hydrological response unit scales
1
作者 Ananta Man Singh Pradhan Pramit Ghimire +3 位作者 Suchita Shrestha Ji-Sung Lee Jung-Hyun Lee Hyuck-Jin Park 《Geoscience Frontiers》 2025年第4期357-372,共16页
This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging... This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging the capabilities of the extreme gradient boosting(XGB)algorithm combined with Shapley Additive Explanations(SHAP),this work assesses the precision and clarity with which each unit predicts areas vulnerable to landslides.SUs focus on the geomorphological features like ridges and valleys,focusing on slope stability and landslide triggers.Conversely,HRUs are established based on a variety of hydrological factors,including land cover,soil type and slope gradients,to encapsulate the dynamic water processes of the region.The methodological framework includes the systematic gathering,preparation and analysis of data,ranging from historical landslide occurrences to topographical and environmental variables like elevation,slope angle and land curvature etc.The XGB algorithm used to construct the Landslide Susceptibility Model(LSM)was combined with SHAP for model interpretation and the results were evaluated using Random Cross-validation(RCV)to ensure accuracy and reliability.To ensure optimal model performance,the XGB algorithm’s hyperparameters were tuned using Differential Evolution,considering multicollinearity-free variables.The results show that SU and HRU are effective for LSM,but their effectiveness varies depending on landscape characteristics.The XGB algorithm demonstrates strong predictive power and SHAP enhances model transparency of the influential variables involved.This work underscores the importance of selecting appropriate assessment units tailored to specific landscape characteristics for accurate LSM.The integration of advanced machine learning techniques with interpretative tools offers a robust framework for landslide susceptibility assessment,improving both predictive capabilities and model interpretability.Future research should integrate broader data sets and explore hybrid analytical models to strengthen the generalizability of these findings across varied geographical settings. 展开更多
关键词 Landslide susceptibility mapping Hydrological response units Slope units Extreme gradient boosting Hyper parameter tuning Shapley additive explanations
在线阅读 下载PDF
A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP)
2
作者 Shuqin Zhang Zihao Wang Xinyu Su 《Computers, Materials & Continua》 2025年第6期5781-5809,共29页
The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial int... The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial intelligence has achieved significant progress in the field of network security.However,many challenges and issues remain,particularly regarding the interpretability of deep learning and ensemble learning algorithms.To address the challenge of enhancing the interpretability of network attack prediction models,this paper proposes a method that combines Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP).LGBM is employed to model anomalous fluctuations in various network indicators,enabling the rapid and accurate identification and prediction of potential network attack types,thereby facilitating the implementation of timely defense measures,the model achieved an accuracy of 0.977,precision of 0.985,recall of 0.975,and an F1 score of 0.979,demonstrating better performance compared to other models in the domain of network attack prediction.SHAP is utilized to analyze the black-box decision-making process of the model,providing interpretability by quantifying the contribution of each feature to the prediction results and elucidating the relationships between features.The experimental results demonstrate that the network attack predictionmodel based on LGBM exhibits superior accuracy and outstanding predictive capabilities.Moreover,the SHAP-based interpretability analysis significantly improves the model’s transparency and interpretability. 展开更多
关键词 Artificial intelligence network attack prediction light gradient boosting machine(LGBM) SHapley Additive explanations(SHAP) INTERPRETABILITY
在线阅读 下载PDF
MMGCF: Generating Counterfactual Explanations for Molecular Property Prediction via Motif Rebuild
3
作者 Xiuping Zhang Qun Liu Rui Han 《Journal of Computer and Communications》 2025年第1期152-168,共17页
Predicting molecular properties is essential for advancing for advancing drug discovery and design. Recently, Graph Neural Networks (GNNs) have gained prominence due to their ability to capture the complex structural ... Predicting molecular properties is essential for advancing for advancing drug discovery and design. Recently, Graph Neural Networks (GNNs) have gained prominence due to their ability to capture the complex structural and relational information inherent in molecular graphs. Despite their effectiveness, the “black-box” nature of GNNs remains a significant obstacle to their widespread adoption in chemistry, as it hinders interpretability and trust. In this context, several explanation methods based on factual reasoning have emerged. These methods aim to interpret the predictions made by GNNs by analyzing the key features contributing to the prediction. However, these approaches fail to answer critical questions: “How to ensure that the structure-property mapping learned by GNNs is consistent with established domain knowledge”. In this paper, we propose MMGCF, a novel counterfactual explanation framework designed specifically for the prediction of GNN-based molecular properties. MMGCF constructs a hierarchical tree structure on molecular motifs, enabling the systematic generation of counterfactuals through motif perturbations. This framework identifies causally significant motifs and elucidates their impact on model predictions, offering insights into the relationship between structural modifications and predicted properties. Our method demonstrates its effectiveness through comprehensive quantitative and qualitative evaluations of four real-world molecular datasets. 展开更多
关键词 INTERPRETABILITY Causal Relationship Counterfactual Explanation Molecular Graph Generation
在线阅读 下载PDF
Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method 被引量:14
4
作者 K.K.Pabodha M.Kannangara Wanhuan Zhou +1 位作者 Zhi Ding Zhehao Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1052-1063,共12页
Accurate prediction of shield tunneling-induced settlement is a complex problem that requires consideration of many influential parameters.Recent studies reveal that machine learning(ML)algorithms can predict the sett... Accurate prediction of shield tunneling-induced settlement is a complex problem that requires consideration of many influential parameters.Recent studies reveal that machine learning(ML)algorithms can predict the settlement caused by tunneling.However,well-performing ML models are usually less interpretable.Irrelevant input features decrease the performance and interpretability of an ML model.Nonetheless,feature selection,a critical step in the ML pipeline,is usually ignored in most studies that focused on predicting tunneling-induced settlement.This study applies four techniques,i.e.Pearson correlation method,sequential forward selection(SFS),sequential backward selection(SBS)and Boruta algorithm,to investigate the effect of feature selection on the model’s performance when predicting the tunneling-induced maximum surface settlement(S_(max)).The data set used in this study was compiled from two metro tunnel projects excavated in Hangzhou,China using earth pressure balance(EPB)shields and consists of 14 input features and a single output(i.e.S_(max)).The ML model that is trained on features selected from the Boruta algorithm demonstrates the best performance in both the training and testing phases.The relevant features chosen from the Boruta algorithm further indicate that tunneling-induced settlement is affected by parameters related to tunnel geometry,geological conditions and shield operation.The recently proposed Shapley additive explanations(SHAP)method explores how the input features contribute to the output of a complex ML model.It is observed that the larger settlements are induced during shield tunneling in silty clay.Moreover,the SHAP analysis reveals that the low magnitudes of face pressure at the top of the shield increase the model’s output。 展开更多
关键词 feature Selection Shield operational parameters Pearson correlation method Boruta algorithm Shapley additive explanations(SHAP) analysis
在线阅读 下载PDF
CONSORT 2010 checklist of information to include when reporting a randomised trial and further explanations
5
《Neural Regeneration Research》 SCIE CAS CSCD 2011年第28期2237-2240,共4页
关键词 WHEN CONSORT 2010 checklist of information to include when reporting a randomised trial and further explanations 2010
暂未订购
Review on Gesture and Speech in the Vocabulary Explanations of One ESL Teacher: A Microanalytic Inquiry" by Anne Lazaraton
6
作者 ZHANG Zi-hong 《Sino-US English Teaching》 2011年第12期747-753,共7页
This paper takes a microanalytic perspective on the speech and gestures used by one teacher of ESL (English as a Second Language) in an intensive English program classroom. Videotaped excerpts from her intermediate-... This paper takes a microanalytic perspective on the speech and gestures used by one teacher of ESL (English as a Second Language) in an intensive English program classroom. Videotaped excerpts from her intermediate-level grammar course were transcribed to represent the speech, gesture and other non-verbal behavior that accompanied unplanned explanations of vocabulary that arose during three focus-on-form lessons. The gesture classification system of McNeill (1992), which delineates different types of hand movements (iconics metaphorics, deictics, beats), was used to understand the role the gestures played in these explanations. Results suggest that gestures and other non-verbal behavior are forms of input to classroom second language learners that must be considered a salient factor in classroom-based SLA (Second Language Acquisition) research 展开更多
关键词 speech and gestures vocabulary explanations ESL (English as a Second Language) Anne Lazaraton
在线阅读 下载PDF
Explaining How: The Intelligibility of Mechanical Explanations in Boyle
7
作者 Jan-Erik Jones 《Journal of Philosophy Study》 2012年第5期337-346,共10页
In this paper I examine the following claims by William Eaton in his monograph Boyle on Fire: (i) that Boyle's religious convictions led him to believe that the world was not completely explicable, and this shows ... In this paper I examine the following claims by William Eaton in his monograph Boyle on Fire: (i) that Boyle's religious convictions led him to believe that the world was not completely explicable, and this shows that there is a shortcoming in the power of mechanical explanations; (ii) that mechanical explanations offer only sufficient, not necessary explanations, and this too was taken by Boyle to be a limit in the explanatory power of mechanical explanations; (iii) that the mature Boyle thought that there could be more intelligible explanatory models than mechanism; and (iv) that what Boyle says at any point in his career is incompatible with the statement of Maria Boas-Hall, i.e., that the mechanical hypothesis can explicate all natural phenomena. Since all four of these claims are part of Eaton's developmental argument, my rejection of them will not only show how the particular developmental story Eaton diagnoses is inaccurate, but will also explain what limits there actually are in Boyle's account of the intelligibility of mechanical explanations. My account will also show why important philosophers like Locke and Leibniz should be interested in Boyle's philosophical work. 展开更多
关键词 Robert Boyle William Eaton Maria Boas-Hall mechanism EXPLANATION INTELLIGIBILITY
在线阅读 下载PDF
Investigating Black-Box Model for Wind Power Forecasting Using Local Interpretable Model-Agnostic Explanations Algorithm
8
作者 Mao Yang Chuanyu Xu +2 位作者 Yuying Bai Miaomiao Ma Xin Su 《CSEE Journal of Power and Energy Systems》 2025年第1期227-242,共16页
Wind power forecasting(WPF)is important for safe,stable,and reliable integration of new energy technologies into power systems.Machine learning(ML)algorithms have recently attracted increasing attention in the field o... Wind power forecasting(WPF)is important for safe,stable,and reliable integration of new energy technologies into power systems.Machine learning(ML)algorithms have recently attracted increasing attention in the field of WPF.However,opaque decisions and lack of trustworthiness of black-box models for WPF could cause scheduling risks.This study develops a method for identifying risky models in practical applications and avoiding the risks.First,a local interpretable model-agnostic explanations algorithm is introduced and improved for WPF model analysis.On that basis,a novel index is presented to quantify the level at which neural networks or other black-box models can trust features involved in training.Then,by revealing the operational mechanism for local samples,human interpretability of the black-box model is examined under different accuracies,time horizons,and seasons.This interpretability provides a basis for several technical routes for WPF from the viewpoint of the forecasting model.Moreover,further improvements in accuracy of WPF are explored by evaluating possibilities of using interpretable ML models that use multi-horizons global trust modeling and multi-seasons interpretable feature selection methods.Experimental results from a wind farm in China show that error can be robustly reduced. 展开更多
关键词 Black-box model correlation analysis feature trust index local interpretability local interpretable modelagnostic explanations(LIME) wind power forecasting
原文传递
Applications of Large Multimodal Models(LMMs)in STEM Education:From Visual Explanations to Virtual Experiments
9
作者 Changkui LI 《Artificial Intelligence Education Studies》 2025年第2期1-18,共18页
Generative Artificial Intelligence(GAI)refers to a class of AI systems capable of creating novel,coherent,and contextually relevant content—such as text,images,audio,and video—based on patterns learned from extensiv... Generative Artificial Intelligence(GAI)refers to a class of AI systems capable of creating novel,coherent,and contextually relevant content—such as text,images,audio,and video—based on patterns learned from extensive training datasets.The public release and rapid refinement of large language models(LLMs)like ChatGPT have accelerated the adoption of GAI across various medical specialties,offering new tools for education,clinical simulation,and research.Dermatology training,which heavily relies on visual pattern recognition and requires extensive exposure to diverse morphological presentations,faces persistent challenges such as uneven distribu-tion of educational resources,limited patient exposure for rare conditions,and variability in teaching quality.Exploring the integration of GAI into pedagogical frameworks offers innovative approaches to address these challenges,potentially enhancing the quality,standardization,scalability,and accessibility of dermatology ed-ucation.This comprehensive review examines the core concepts and technical foundations of GAI,highlights its specific applications within dermatology teaching and learning—including simulated case generation,per-sonalized learning pathways,and academic support—and discusses the current limitations,practical challenges,and ethical considerations surrounding its use.The aim is to provide a balanced perspective on the significant potential of GAI for transforming dermatology education and to offer evidence-based insights to guide future exploration,implementation,and policy development. 展开更多
关键词 Large Multimodal Models(LMMs) STEM Education Visual explanations Virtual Laboratories/Virtual Experiments Critical AI Literacy
在线阅读 下载PDF
Transfer learning-based encoder-decoder model with visual explanations for infrastructure crack segmentation:New open database and comprehensive evaluation 被引量:2
10
作者 Fangyu Liu Wenqi Ding +1 位作者 Yafei Qiao Linbing Wang 《Underground Space》 SCIE EI CSCD 2024年第4期60-81,共22页
Contemporary demands necessitate the swift and accurate detection of cracks in critical infrastructures,including tunnels and pavements.This study proposed a transfer learning-based encoder-decoder method with visual ... Contemporary demands necessitate the swift and accurate detection of cracks in critical infrastructures,including tunnels and pavements.This study proposed a transfer learning-based encoder-decoder method with visual explanations for infrastructure crack segmentation.Firstly,a vast dataset containing 7089 images was developed,comprising diverse conditions—simple and complex crack patterns as well as clean and rough backgrounds.Secondly,leveraging transfer learning,an encoder-decoder model with visual explanations was formulated,utilizing varied pre-trained convolutional neural network(CNN)as the encoder.Visual explanations were achieved through gradient-weighted class activation mapping(Grad-CAM)to interpret the CNN segmentation model.Thirdly,accuracy,complexity(computation and model),and memory usage assessed CNN feasibility in practical engineering.Model performance was gauged via prediction and visual explanation.The investigation encompassed hyperparameters,data augmentation,deep learning from scratch vs.transfer learning,segmentation model architectures,segmentation model encoders,and encoder pre-training strategies.Results underscored transfer learning’s potency in enhancing CNN accuracy for crack segmentation,surpassing deep learning from scratch.Notably,encoder classification accuracy bore no significant correlation with CNN segmentation accuracy.Among all tested models,UNet-EfficientNet_B7 excelled in crack segmentation,harmonizing accuracy,complexity,memory usage,prediction,and visual explanation. 展开更多
关键词 Crack segmentation Transfer learning Visual explanation INFRASTRUCTURE Database
在线阅读 下载PDF
Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques
11
作者 Hussam Qushtom Ahmad Hasasneh Sari Masri 《Computers, Materials & Continua》 2025年第7期1379-1395,共17页
This study presents an enhanced convolutional neural network(CNN)model integrated with Explainable Artificial Intelligence(XAI)techniques for accurate prediction and interpretation of wheat crop diseases.The aim is to... This study presents an enhanced convolutional neural network(CNN)model integrated with Explainable Artificial Intelligence(XAI)techniques for accurate prediction and interpretation of wheat crop diseases.The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management.To evaluate the model,a dataset was collected from wheat fields in Kotli,Azad Kashmir,Pakistan,and tested across multiple data splits.The proposed model demonstrates improved stability,faster conver-gence,and higher classification accuracy.The results show significant improvements in prediction accuracy and stability compared to prior works,achieving up to 100%accuracy in certain configurations.In addition,XAI methods such as Local Interpretable Model-agnostic Explanations(LIME)and Shapley Additive Explanations(SHAP)were employed to explain the model’s predictions,highlighting the most influential features contributing to classification decisions.The combined use of CNN and XAI offers a dual benefit:strong predictive performance and clear interpretability of outcomes,which is especially critical in real-world agricultural applications.These findings underscore the potential of integrating deep learning models with XAI to advance automated plant disease detection.The study offers a precise,reliable,and interpretable solution for improving wheat production and promoting agricultural sustainability.Future extensions of this work may include scaling the dataset across broader regions and incorporating additional modalities such as environmental data to enhance model robustness and generalization. 展开更多
关键词 Convolutional neural network(CNN) wheat crop disease deep learning disease detection shapley additive explanations(SHAP) local interpretable model-agnostic explanations(LIME)
在线阅读 下载PDF
基于随机森林与SHAP算法的致密砂岩气暂堵效果的影响因素分析
12
作者 黄浩 车恒达 +3 位作者 孔祥伟 辛富斌 向九洲 吉俊杰 《科学技术与工程》 北大核心 2025年第26期11135-11143,共9页
为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂... 为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂堵效果量化模型和公式、暂堵效果算法模型验证,发现暂堵效果量化值与产气贡献率正相关,P=0.037,证明暂堵效果量化模型和公式的准确性高;又因暂堵效果算法模型中,训练集与测试集的MSE、MAE、R^(2)相差微小,证明该模型的泛化能力较强且准确性高。在暂堵效果算法模型的基础之上,开展暂堵效果的影响因素分析,结果表明:总段数、渗透率、暂堵球数量、簇间距和砂比这5个因素对于暂堵效果的影响占比最大。进一步分析单影响因素,发现随总段数增加,暂堵效果增加的规律只适用于直井,对水平井不适用;随渗透率增加,暂堵效果变差;暂堵球数量<50个、簇间距>20 m、砂比介于18%~20%,暂堵效果均可达到正向增长。研究结果可为苏里格等气田现场暂堵作业设计提供借鉴和参考。 展开更多
关键词 苏里格气田 致密砂岩气 暂堵效果 随机森林 SHAP(Shapley additive explanations)值 模型解释
在线阅读 下载PDF
Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe 被引量:1
13
作者 Jing-dong Li You-zhao Sun +4 位作者 Xiao-chen Wang Quan Yang Guo-dong Liu Hao-tang Qie Feng-xia Li 《Journal of Iron and Steel Research International》 2025年第8期2475-2490,共16页
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an... Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts. 展开更多
关键词 Mechanical property Hot-rolled steel pipe Machine learning Adaptive bandwidth kernel density estimation Shapley additive explanations-based explanation
原文传递
基于机器学习的铜电解精炼电积过程电压及出液铜离子浓度预测模型研究
14
作者 闫哲祯 卢金成 +3 位作者 程寒 廖嘉琪 徐夫元 段宁 《有色金属(冶炼部分)》 北大核心 2025年第9期13-24,共12页
电积是目前最为常用的铜电解液净化工艺,其出口铜离子浓度波动大、人工调控难度高,易造成后续硫化单元处理负荷剧增及铜砷共沉淀产废量增大,而传统预测模型存在不可解释、稳态限制、低泛化能力等缺陷。为此,构建了企业电积生产过程电压... 电积是目前最为常用的铜电解液净化工艺,其出口铜离子浓度波动大、人工调控难度高,易造成后续硫化单元处理负荷剧增及铜砷共沉淀产废量增大,而传统预测模型存在不可解释、稳态限制、低泛化能力等缺陷。为此,构建了企业电积生产过程电压及出液铜离子浓度准确预测的多参数模型。通过对比研究10种机器学习模型,发现GBR在电压预测中表现最优(决定系数R^(2)=0.79,均方误差MSE=1.25),XGBoost对出液铜离子浓度的预测准确度最高(R^(2)=0.87,MSE=5.58)。SHAP解释性分析表明,电流和时间分别是影响电压和出液铜离子浓度变化的主控因素。模型决策机制与电化学原理及质量守恒定律一致,突破了传统模型对非线性关系的表征局限,为异常工况的预警诊断、关键参数动态优化控制及减少污染物产生提供依据。 展开更多
关键词 铜电积 机器学习 Gradient Boosting Regression(GBR) eXtreme Gradient Boosting(XGBoost) 解释性分析 Shapley Additive explanations(SHAP)
在线阅读 下载PDF
Illuminating the black box:Machine learning enhances preoperative prediction in intrahepatic cholangiocarcinoma
15
作者 Eyad Gadour Mohammed S AlQahtani 《World Journal of Gastroenterology》 2025年第17期96-99,共4页
The study by Huang et al,published in the World Journal of Gastroenterology,advances intrahepatic cholangiocarcinoma(ICC)management by developing a machine-learning model to predict textbook outcomes(TO)based on preop... The study by Huang et al,published in the World Journal of Gastroenterology,advances intrahepatic cholangiocarcinoma(ICC)management by developing a machine-learning model to predict textbook outcomes(TO)based on preoperative factors.By analyzing data from 376 patients across four Chinese medical centers,the researchers identified key variables influencing TO,including Child-Pugh classification,Eastern Cooperative Oncology Group score,hepatitis B status,and tumor size.The model,created using logistic regression and the extreme gradient boosting algorithm,demonstrated high predictive accuracy,with area under the curve values of 0.8825 for internal validation and 0.8346 for external validation.The integration of the Shapley additive explanation technique enhances the interpretability of the model,which is crucial for clinical decision-making.This research highlights the potential of machine learning to improve surgical planning and patient outcomes in ICC,opening possibilities for personalized treatment approaches based on individual patient characteristics and risk factors. 展开更多
关键词 Intrahepatic cholangiocarcinoma Textbook outcome Machine learning Predictive model Shapley additive explanations Preoperative assessment Surgical outcomes Disease-free survival Extreme gradient boosting Clinical decision-making
暂未订购
Addressing accuracy challenges in machine learning for debris flow susceptibility:Insights from the Yalong River basin
16
作者 MING Zaiyang ZHANG Jianqiang +3 位作者 HE Haiqing ZHANG Lili CHEN Rong JIA Yang 《Journal of Mountain Science》 2025年第6期2034-2052,共19页
Machine learning-based Debris Flow Susceptibility Mapping(DFSM)has emerged as an effective approach for assessing debris flow likelihood,yet its application faces three critical challenges:insufficient reliability of ... Machine learning-based Debris Flow Susceptibility Mapping(DFSM)has emerged as an effective approach for assessing debris flow likelihood,yet its application faces three critical challenges:insufficient reliability of training samples caused by biased negative sampling,opaque decision-making mechanisms in models,and subjective susceptibility mapping methods that lack quantitative evaluation criteria.This study focuses on the Yalong River basin.By integrating high-resolution remote sensing interpretation and field surveys,we established a refined sample database that includes 1,736 debris flow gullies.To address spatial bias in traditional random negative sampling,we developed a semi-supervised optimization strategy based on iterative confidence screening.Comparative experiments with four treebased models(XGBoost,CatBoost,LGBM,and Random Forest)reveal that the optimized sampling strategy improved overall model performance by 8%-12%,with XGBoost achieving the highest accuracy(AUC=0.882)and RF performing the lowest(AUC=0.820).SHAP-based global-local interpretability analysis(applicable to all tree models)identifies elevation and short-duration rainfall as dominant controlling factors.Furthermore,among the tested tree-based models,XGBoost optimized with semisupervised sampling demonstrates the highest reliability in debris flow susceptibility mapping(DFSM),achieving a comprehensive accuracy of 83.64%due to its optimal generalization-stability equilibrium. 展开更多
关键词 Debris flow Susceptibility mapping Accuracy assessment Yalong River basin Machine learning SHapley Additive explanations
原文传递
Machine learning-based nomogram for predicting depressive symptoms in women:A cross-sectional study in Guangdong Province,China
17
作者 Jia-Min Chen Mei Rao +4 位作者 Yu-Ting Wei Qiong-Gui Zhou Jun-Long Tao Shi-Bin Wang Bo Bi 《World Journal of Psychiatry》 2025年第8期281-300,共20页
BACKGROUND Female depression is a prevalent and increasingly recognized mental health issue.Due to cultural and social factors,many female patients still face challenges in diagnosis and treatment,and traditional asse... BACKGROUND Female depression is a prevalent and increasingly recognized mental health issue.Due to cultural and social factors,many female patients still face challenges in diagnosis and treatment,and traditional assessment methods often fail to identify high-risk individuals accurately.This highlights the necessity of developing more precise predictive tools.Utilizing machine learning(ML)algorithms to construct predictive models may overcome the limitations of traditional methods,providing more comprehensive support for women’s mental health.AIM To construct an ML-nomogram hybrid model that translates multivariate risk predictors of female depressive symptoms into actionable clinical scoring thresholds,optimizing predictive accuracy and interpretability for healthcare applications.METHODS We analyzed data from 7609 female participants aged 18 to 85 years from the Guangdong Provincial Sleep and Psychosomatic Health Survey.Sixteen variables,including anxiety symptoms,insomnia,chronic diseases,exercise habits,and age,were selected based on prior literature and comprehensively incorporated into ML models to maximize predictive information utilization.Three ML algorithms,extreme gradient boosting,support vector machine,and light gradient boosting machine,were employed to construct predictive models.Model performance was evaluated using accuracy,precision,recall,F1 score,and area under the curve(AUC).Feature importance was interpreted using SHapley Additive exPlanations(SHAP),with ablation studies validating the impact of the top five SHAPderived features on predictive performance,and a nomogram was constructed based on these prioritized predictors.Clinical utility was assessed through decision curve analysis.RESULTS The prevalence of depressive symptoms was 6.8%among the sample.The evaluation of predictive models revealed that light gradient boosting machine achieved a top-performing AUC of 0.867,placing it ahead of extreme gradient boosting(AUC=0.862)and support vector machine(AUC=0.849).SHAP analysis identified insomnia,anxiety symptoms,age,chronic disease,and exercise as the top five predictors.The nomogram based on these features demonstrated excellent discrimination(AUC=0.910)and calibration,with significant net benefits in decision curve analysis compared to baseline strategies.The model effectively stratifies depressive symptoms risk,facilitating personalized and quantitative assessments in clinical settings.We also developed an interactive digital version of the nomogram to facilitate its application in clinical practice.CONCLUSION The ML-based model effectively predicts depressive symptoms in women,identifying insomnia,anxiety symptoms,age,chronic diseases,and exercise as key predictors,offering a practical tool for early detection and intervention. 展开更多
关键词 Depressive symptoms Women’s mental health Machine learning Predictive modeling SHapley Additive explanations NOMOGRAM Guangdong Province
暂未订购
Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization
18
作者 Sen Yang Jie Zhong +5 位作者 Boyu Gan Yi Sun Changming Bu Mingtao Zhang Jiehong Li Yang Yu 《Computer Modeling in Engineering & Sciences》 2025年第9期2943-2967,共25页
Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive st... Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive strength tests for foam concrete take a long time,a fast and accurate prediction method is needed.In recent years,machine learning has become a powerful tool for predicting the compressive strength of cement-based materials.However,existing studies often use a limited number of input parameters,and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.This study selects foam concrete density,water-to-cement ratio(W/C),supplementary cementitious material replacement rate(SCM),fine aggregate to binder ratio(FA/Binder),superplasticizer content(SP),and age of the concrete(Age)as input parameters,with compressive strength as the output.Five different machine learning models were compared,and sensitivity analysis,based on Shapley Additive Explanations(SHAP),was used to assess the contribution of each input parameter.The results show that Gaussian Process Regression(GPR)outperforms the other models,with R2,RMSE,MAE,and MAPE values of 0.95,1.6,0.81,and 0.2,respectively.It is because GPR,optimized through Bayesian methods,better fits complex nonlinear relationships,especially considering a large number of input parameters.Sensitivity analysis indicates that the influence of input parameters on compressive strength decreases in the following order:foam concrete density,W/C,Age,FA/Binder,SP,and SCM. 展开更多
关键词 Foam concrete compressive strength machine learning Gaussian grocess regression shapley additive explanations
在线阅读 下载PDF
Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome
19
作者 Luan Thanh Vo Thien Vu +2 位作者 Thach Ngoc Pham Tung Huu Trinh Thanh Tat Nguyen 《World Journal of Methodology》 2025年第3期89-99,共11页
BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms ... BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms for predicting the risk of inhospital mortality in children with dengue shock syndrome(DSS).AIM To develop machine-learning models to estimate the risk of death in hospitalized children with DSS.METHODS This single-center retrospective study was conducted at tertiary Children’s Hospital No.2 in Viet Nam,between 2013 and 2022.The primary outcome was the in-hospital mortality rate in children with DSS admitted to the pediatric intensive care unit(PICU).Nine significant features were predetermined for further analysis using machine learning models.An oversampling method was used to enhance the model performance.Supervised models,including logistic regression,Naïve Bayes,Random Forest(RF),K-nearest neighbors,Decision Tree and Extreme Gradient Boosting(XGBoost),were employed to develop predictive models.The Shapley Additive Explanation was used to determine the degree of contribution of the features.RESULTS In total,1278 PICU-admitted children with complete data were included in the analysis.The median patient age was 8.1 years(interquartile range:5.4-10.7).Thirty-nine patients(3%)died.The RF and XGboost models demonstrated the highest performance.The Shapley Addictive Explanations model revealed that the most important predictive features included younger age,female patients,presence of underlying diseases,severe transaminitis,severe bleeding,low platelet counts requiring platelet transfusion,elevated levels of international normalized ratio,blood lactate and serum creatinine,large volume of resuscitation fluid and a high vasoactive inotropic score(>30).CONCLUSION We developed robust machine learning-based models to estimate the risk of death in hospitalized children with DSS.The study findings are applicable to the design of management schemes to enhance survival outcomes of patients with DSS. 展开更多
关键词 Dengue shock syndrome Dengue mortality Machine learning Supervised models Logistic regression Random forest K-nearest neighbors Support vector machine Extreme Gradient Boost Shapley addictive explanations
暂未订购
CARE:Comprehensive Artificial Intelligence Techniques for Reliable Autism Evaluation in Pediatric Care
20
作者 Jihoon Moon Jiyoung Woo 《Computers, Materials & Continua》 2025年第10期1383-1425,共43页
Improving early diagnosis of autism spectrum disorder(ASD)in children increasingly relies on predictive models that are reliable and accessible to non-experts.This study aims to develop such models using Python-based ... Improving early diagnosis of autism spectrum disorder(ASD)in children increasingly relies on predictive models that are reliable and accessible to non-experts.This study aims to develop such models using Python-based tools to improve ASD diagnosis in clinical settings.We performed exploratory data analysis to ensure data quality and identify key patterns in pediatric ASD data.We selected the categorical boosting(CatBoost)algorithm to effectively handle the large number of categorical variables.We used the PyCaret automated machine learning(AutoML)tool to make the models user-friendly for clinicians without extensive machine learning expertise.In addition,we applied Shapley additive explanations(SHAP),an explainable artificial intelligence(XAI)technique,to improve the interpretability of the models.Models developed using CatBoost and other AI algorithms showed high accuracy in diagnosing ASD in children.SHAP provided clear insights into the influence of each variable on diagnostic outcomes,making model decisions transparent and understandable to healthcare professionals.By integrating robust machine learning methods with user-friendly tools such as PyCaret and leveraging XAI techniques such as SHAP,this study contributes to the development of reliable,interpretable,and accessible diagnostic tools for ASD.These advances hold great promise for supporting informed decision-making in clinical settings,ultimately improving early identification and intervention strategies for ASD in the pediatric population.However,the study is limited by the dataset’s demographic imbalance and the lack of external clinical validation,which should be addressed in future research. 展开更多
关键词 Autism spectrum disorder pediatric care exploratory data analysis categorical boosting automated machine learning explainable artificial intelligence Shapley additive explanations
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部