Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spont...Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.展开更多
The modeling system of the gas detonation by the human body electrostatic discharge(ESD)in coal mine is developed successfully,and the body’s dynamic ESD model is established.To obtain a gas concentration causes by t...The modeling system of the gas detonation by the human body electrostatic discharge(ESD)in coal mine is developed successfully,and the body’s dynamic ESD model is established.To obtain a gas concentration causes by the explosions most easily in coal mine environment.The results provide an academic and experimental evidence for the safe electrostatic production and management in coal mine.The system adopts 77E58 as control core and the circuit optimized design,to take dual protection to the gas path and circuit of the system,systematic operation is safe and reliable.The experimental results show that the system can be carried out series of experiments of the human body ESD model detonating mixed gas,the measuring accuracy of gas concentration is 0.1%.And draws a conclusion that the gas concentration which causes the explosions most easily is 8.7%,but not the higher gas concentration is,the more explosive is.展开更多
A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of...A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of the experimental tank is 10 ma. Pressure histories of the explosion pressure can be measured at different locations in the tank. High pressure glass windows of 200~300 mm were used to have access to the visualization of the explosion process. The explosion process of methane/air mixture and methane/coal dust/air mixture initiated by a 40 J electric spark at the center of the tank was studied in the large^scale experimental system. Five pressure sonsars were arranged in the tank with different distances from the ignition point. Ton dust dispersion traits were equipped to eject dust into the tank. A high-speed camera system was used to visualize the flame propagation during the explosion process. The characteristics of the pressure wave and flame propagated in methane/air mixtures and methane/coal dust/air mixtures have been展开更多
The problems in the vehicle off-road experiment, such as various kinds of expensive instruments and diffi- culty in matching the input and the output signals of the vehicle status which cause useless data acquired. On...The problems in the vehicle off-road experiment, such as various kinds of expensive instruments and diffi- culty in matching the input and the output signals of the vehicle status which cause useless data acquired. On the basis of considering the test functions and experimental cost, this paper has developed a vehicle off-road experimental system basing on the Labview. This system can complete various kinds of signal acquisition in one experimental sys- tem and automatically restore the data by types. This solves the problem of real time matching between the input and the output signals, making sure that the data won't be confused as the experimental increase, so as to level the ex- perimental efficiency and data accuracy. This system has been used to the experiment of some armored vehicles. The analysis of the data has verified the reliability of the system.展开更多
The current natural gas hydrate extraction experimental research has always been carried out in a small-scale simulation test device,and the resulted boundary effect is so obvious due to the small size of samples in t...The current natural gas hydrate extraction experimental research has always been carried out in a small-scale simulation test device,and the resulted boundary effect is so obvious due to the small size of samples in the reaction kettle that the experimental results will be difficult to apply in the field.In this paper,an integrated experimental system for drilling and exploitation of gas hydrate is developed innovatively based on the idea of depressurization method and the technological process.This experimental system consists of high-pressure vesselmodule,drilling&extraction module,liquid supply module,gas supply module,confining pressure loading module,back-pressure control module,three-phase separation module,temperature control module,data acquisition module and an operational platform.The hydrate-bearing samples similar to marine hydrate formations were prepared inthe experimental system with the actual geological surroundings simulated.The electrical resistance tomography was used to real-time monitor the dynamic distribution of gas hydrate in sediments inside the high-pressure vessel(521 L).This experimental system can also simulate the process of wellbore drilling in hydrate reservoirs and depressurization extraction,and realize the real-time monitoring of parameters in the whole production process such as gas production,water production,sand production,temperature,pressure,etc.We carried out a preliminary experiment on the CO_(2) hydrate extraction via depressurization by using this experimental system.Fundamental procedures for data acquisition and analysis were established and verified.The variations of temperature and pressure fields and gas/water output behaviors in the reservoirs were both achieved.The results show that(1)the gas and water production rate fluctuate greatly even at a constant backpressure;(2)the reservoir temperature distribution is uneven during hydrate decomposition,and the maximum temperature is decreased by 5℃,suggesting that the hydrate decomposition is heterogeneous and stochastic.The abundant and credible experimental results based on this system are expected to provide important data support for marine gas hydrate production tests.展开更多
Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as...Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.展开更多
At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the stude...At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly effi...In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.展开更多
Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experim...Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experimental assessment,we examined the key targets,bioactive components,and mechanisms of QSYQ against IS.Results:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform predicted a total number of 254 targets that were potentially related to QSYQ,whereas 699 targets associated with IS were gathered from Therapeutic Target Database,Comparative Toxicogenomics Database,Gene Cards,Online Mendelian Inheritance in Man,and National Center for Biotechnology Information databases,and 83 of these targets overlap with QSYQ-related targets.Importantly,through the analysis of Gene Ontology functional annotation,Kyoto Encyclopedia of Genes and Genomes pathway enrichment,and protein-protein interaction network,we identified 20 related signaling pathways along with 4 hub genes.Subsequently,our molecular docking results revealed that QSYQ might interact with PTGS2,PTGS1,SCN5A,and HSP90AB1.We observed dose-dependent beneficial effects of QSYQ in significantly improving neurological function and alleviating histopathological damage in middle cerebral artery occlusion model,while decreasing infarct volume.Notablely,QSYQ markedly downregulates tumor necrosis factor-α,interleukin-6,and interleukin-1 beta.Overall,this study demonstrates the synergetic effects of QSYQ on regulating multi-targets in IS through inhibiting inflammatory processes and neuronal apoptosis,these findings may expand the understanding of QSYQ and provide guidance for its clinical application in treating IS.Conclusion:Current study reveals the protective roles of QSYQ against IS through modulating PTGS2/PTGS1/SCN5A/HSP90AB1 and TNF signaling pathways.展开更多
This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwent...This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
OBJECTIVE:To systematically evaluate the role of electroacupuncture in maintaining brain plasticity in ischemic stroke mediated brain damage.METHODS:We searched for all relevant trials published through Oct 7,2022 fro...OBJECTIVE:To systematically evaluate the role of electroacupuncture in maintaining brain plasticity in ischemic stroke mediated brain damage.METHODS:We searched for all relevant trials published through Oct 7,2022 from seven databases.Methodological quality was assessed using the CAMARADES Risk of Bias Tool.A Meta-analysis of comparative effects was performed using Review Manager v.5.3 software.RESULTS:A total of 101 studies involving 2148 animals were included.For most studies,primary outcomes results of the Meta-analysis indicate that EA significantly improved ischemic stroke rat's postsynaptic density thickness[Standardized Mean Difference(SMD)=1.41,95%confidence interval(CI)(0.59,2.23),P=0.0008],numerical density of synapses[SMD=1.55,95%CI(0.48,2.63),P=0.005]compared with non-EA-treated.Similarly,EA could improve parts of biomarkers of synapses,neurogenesis,angiogenesis and neurotrophin activity than the control group(P<0.05).CONCLUSION:The existing evidence suggests EA regulating ischemic stroke may be through brain plasticity.More rigorous and high quality studies should be conducted in the future.展开更多
With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utili...With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utilization,a more effective method is to install floating breakwaters near the terrain of islands and reefs.The terrain around islands and reefs is complex,and waves undergo a series of changes due to the impact of the complex terrain in transmission.It is important to find a suitable location for floating breakwater systems on islands and reefs and investigate how the terrain affects the system’s hydrodynamic performance.This paper introduces a three-cylinder floating breakwater design.The breakwater system consists of 8 units connected by elastic structures and secured by a slack mooring system.To evaluate its effectiveness,a 3D model experiment was conducted in a wave basin.During the experiment,a model resembling the islands and reefs terrain was created on the basis of the water depth map of a specific region in the East China Sea.The transmission coefficients and motion responses of the three-cylinder floating breakwater system were then measured.This was done both in the middle of and behind the islands and reefs terrain.According to the experimental results,the three-cylinder floating breakwater system performs better in terms of hydrodynamics when it is placed behind the terrain of islands and reefs than in the middle of the same terrain.展开更多
The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a sig...The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a significantuncertainty to synthesis and site comparisons. We investigated the responses of vegetation and soil nutrientsto drought using a network experiment of temperate grasslands in Northern China. Drought treatment (66%reduction in growing season precipitation) was imposed by erecting rainout shelters, respectively, at the driest,intermediate, and wettest sites. We found that vegetation nutrient concentrations increased but soil nutrient concentrationsdecreased along the aridity gradient. Differential responses were observed under experimentaldrought among the three grassland sites. Specifically, the experimental drought did not change vegetation andsoil nutrient status at the driest site, while strongly reduced vegetation but increased soil nutrient concentrationsat the site with intermediate precipitation. On the contrary, experimental drought increased vegetation N concentrationsbut did not change vegetation P and soil nutrient concentrations at the wettest site. In general, the differentialeffects of drought on ecosystem nutrients were observed between manipulative and observationalexperiments as well as between sites. Our research findings suggest that conducting large-scale, consistent, andcontrolled network experiments is essential to accurately evaluate the effects of global climate change on terrestrialecosystem bio-geochemistry.展开更多
Although many studies based on naturally deformed samples have been carried out to investigate the pore-crack characteristics of shales,studies based on high temperature(T)and high pressure(P)deformation experiments,w...Although many studies based on naturally deformed samples have been carried out to investigate the pore-crack characteristics of shales,studies based on high temperature(T)and high pressure(P)deformation experiments,which can exclude sample heterogeneity factors,simulate deep T-P conditions,and generate a continuous deformation sequence,are still rare.In this study,shales with different deformation levels are generated by triaxial compression experiments,and methods including scanning electron microscopy,mercury injection,and gas sorption are utilized to characterize their influence factors and pore-crack characteristics.Results indicate that T is the primary factor influencing shale deformation when P is low,while P is dominant under high P conditions.At T<90℃ and P<60 MPa,shales undergo brittle deformation and their macropores decrease due to the compaction of primary pores,while mesopores increase because of the interconnection of micropores.At 90℃<T<200℃ and 60 MPa<P<110 MPa,shales experience brittle-ductile transitional deformation,and their macro-and micropores increase because of the extension of open cracks and the plastic deformation of clay flakes respectively,while mesopores decrease dramatically.At T>200℃ and P>110 MPa,shales are subjected to ductile deformation,and their micro-and mesopores drop significantly due to the intense compaction in the matrix while macropores continuously increase with crack expansion.The permeability of shale increases with the degree of deformation and ductile material contents are predicted to be a key factor determining whether open microcracks can be preserved after ductile deformation.To account for these experimental results,an ideal model of micro pore-crack system evolution in deformed shales is further proposed,which can provide guidance for the exploration of shale gas resources in the deep or structurally complex zones.展开更多
BACKGROUND Anastomotic leaks remain one of the most dreaded complications in gastrointestinal surgery causing significant morbidity,that negatively affect the patients’quality of life.Experimental studies play an imp...BACKGROUND Anastomotic leaks remain one of the most dreaded complications in gastrointestinal surgery causing significant morbidity,that negatively affect the patients’quality of life.Experimental studies play an important role in understanding the pathophysiological background of anastomotic healing and there are still many fields that require further investigation.Knowledge drawn from these studies can lead to interventions or techniques that can reduce the risk of anastomotic leak in patients with high-risk features.Despite the advances in experimental protocols and techniques,designing a high-quality study is still challenging for the investigators as there is a plethora of different models used.AIM To review current state of the art for experimental protocols in high-risk anastomosis in rats.METHODS This systematic review was performed according to The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.To identify eligible studies,a comprehensive literature search was performed in the electronic databases PubMed(MEDLINE)and Scopus,covering the period from conception until 18 October 2023.RESULTS From our search strategy 102 studies were included and were categorized based on the mechanism used to create a high-risk anastomosis.Methods of assessing anastomotic healing were extracted and were individually appraised.CONCLUSION Anastomotic healing studies have evolved over the last decades,but the findings are yet to be translated into human studies.There is a need for high-quality,well-designed studies that will help to the better understanding of the pathophysiology of anastomotic healing and the effects of various interventions.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extra...Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
基金Financial support for this study was kindly provided by the National Natural Science Foundation Project of China(No.51804246,No.52174202)Natural Science Foundation of Xinjiang Province(No.2019D01C057)the Youth Talent Promotion Program of Shaanxi University Association for Science and Technology(No.20200425).
文摘Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.
文摘The modeling system of the gas detonation by the human body electrostatic discharge(ESD)in coal mine is developed successfully,and the body’s dynamic ESD model is established.To obtain a gas concentration causes by the explosions most easily in coal mine environment.The results provide an academic and experimental evidence for the safe electrostatic production and management in coal mine.The system adopts 77E58 as control core and the circuit optimized design,to take dual protection to the gas path and circuit of the system,systematic operation is safe and reliable.The experimental results show that the system can be carried out series of experiments of the human body ESD model detonating mixed gas,the measuring accuracy of gas concentration is 0.1%.And draws a conclusion that the gas concentration which causes the explosions most easily is 8.7%,but not the higher gas concentration is,the more explosive is.
基金supported by the National Natural Science Foundation of China(No.10772032)the Foundation of State Key Lab of Explosion Science and Technology(No.ZDKT08-02-6,and YBKT09-1)
文摘A large-scale experimental for multiphase combustion and explosion study was developed and manufactured. The explosion tank consists of a 2 m diameter, 3.5 m long tube and ellipsoidai dames on both ends. The volume of the experimental tank is 10 ma. Pressure histories of the explosion pressure can be measured at different locations in the tank. High pressure glass windows of 200~300 mm were used to have access to the visualization of the explosion process. The explosion process of methane/air mixture and methane/coal dust/air mixture initiated by a 40 J electric spark at the center of the tank was studied in the large^scale experimental system. Five pressure sonsars were arranged in the tank with different distances from the ignition point. Ton dust dispersion traits were equipped to eject dust into the tank. A high-speed camera system was used to visualize the flame propagation during the explosion process. The characteristics of the pressure wave and flame propagated in methane/air mixtures and methane/coal dust/air mixtures have been
文摘The problems in the vehicle off-road experiment, such as various kinds of expensive instruments and diffi- culty in matching the input and the output signals of the vehicle status which cause useless data acquired. On the basis of considering the test functions and experimental cost, this paper has developed a vehicle off-road experimental system basing on the Labview. This system can complete various kinds of signal acquisition in one experimental sys- tem and automatically restore the data by types. This solves the problem of real time matching between the input and the output signals, making sure that the data won't be confused as the experimental increase, so as to level the ex- perimental efficiency and data accuracy. This system has been used to the experiment of some armored vehicles. The analysis of the data has verified the reliability of the system.
基金supported by the Science Foundation for Youths under the National Natural Science Foundation of China(No.:41606078 and 41876051)the Research Project of China Geological Survey of the Ministry of Land and Resources“Gas Hydrate Test Technology and Simulation”(No.:DD20160216).
文摘The current natural gas hydrate extraction experimental research has always been carried out in a small-scale simulation test device,and the resulted boundary effect is so obvious due to the small size of samples in the reaction kettle that the experimental results will be difficult to apply in the field.In this paper,an integrated experimental system for drilling and exploitation of gas hydrate is developed innovatively based on the idea of depressurization method and the technological process.This experimental system consists of high-pressure vesselmodule,drilling&extraction module,liquid supply module,gas supply module,confining pressure loading module,back-pressure control module,three-phase separation module,temperature control module,data acquisition module and an operational platform.The hydrate-bearing samples similar to marine hydrate formations were prepared inthe experimental system with the actual geological surroundings simulated.The electrical resistance tomography was used to real-time monitor the dynamic distribution of gas hydrate in sediments inside the high-pressure vessel(521 L).This experimental system can also simulate the process of wellbore drilling in hydrate reservoirs and depressurization extraction,and realize the real-time monitoring of parameters in the whole production process such as gas production,water production,sand production,temperature,pressure,etc.We carried out a preliminary experiment on the CO_(2) hydrate extraction via depressurization by using this experimental system.Fundamental procedures for data acquisition and analysis were established and verified.The variations of temperature and pressure fields and gas/water output behaviors in the reservoirs were both achieved.The results show that(1)the gas and water production rate fluctuate greatly even at a constant backpressure;(2)the reservoir temperature distribution is uneven during hydrate decomposition,and the maximum temperature is decreased by 5℃,suggesting that the hydrate decomposition is heterogeneous and stochastic.The abundant and credible experimental results based on this system are expected to provide important data support for marine gas hydrate production tests.
基金supported by the National Natural Science Foundation of China(Grant No.41274111)the financial support of the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)the One Hundred Talent Program of CAS(Grant No.O931061C01)
文摘Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.
基金the the National Key R&D Program of China(No.2018YFB1004901)the Independent Innovation Team Project of Jinan City(No.2019GXRC013).
文摘At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金Supported by Major Project of School-level Teaching Reform and Research of Guangxi University of Chinese Medicine(2022A006)。
文摘In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.
基金supported by the National Natural Science Foundation of China(No.82274313)Projects of Shaanxi Administration of Traditional Chinese Medicine(2022-SLRH-YQ-010)Key Laboratory of Traditional Chinese Medicine and Pharmacology.
文摘Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experimental assessment,we examined the key targets,bioactive components,and mechanisms of QSYQ against IS.Results:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform predicted a total number of 254 targets that were potentially related to QSYQ,whereas 699 targets associated with IS were gathered from Therapeutic Target Database,Comparative Toxicogenomics Database,Gene Cards,Online Mendelian Inheritance in Man,and National Center for Biotechnology Information databases,and 83 of these targets overlap with QSYQ-related targets.Importantly,through the analysis of Gene Ontology functional annotation,Kyoto Encyclopedia of Genes and Genomes pathway enrichment,and protein-protein interaction network,we identified 20 related signaling pathways along with 4 hub genes.Subsequently,our molecular docking results revealed that QSYQ might interact with PTGS2,PTGS1,SCN5A,and HSP90AB1.We observed dose-dependent beneficial effects of QSYQ in significantly improving neurological function and alleviating histopathological damage in middle cerebral artery occlusion model,while decreasing infarct volume.Notablely,QSYQ markedly downregulates tumor necrosis factor-α,interleukin-6,and interleukin-1 beta.Overall,this study demonstrates the synergetic effects of QSYQ on regulating multi-targets in IS through inhibiting inflammatory processes and neuronal apoptosis,these findings may expand the understanding of QSYQ and provide guidance for its clinical application in treating IS.Conclusion:Current study reveals the protective roles of QSYQ against IS through modulating PTGS2/PTGS1/SCN5A/HSP90AB1 and TNF signaling pathways.
基金supported by grants from National High-Level Hospital Clinical Research Funding(2023-GSP-RC-04).
文摘This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金National Natural Science Foundation of China Project:Electroacupuncture Prevents Ferroptosis in Ischemic Stroke Through Regulating Ubiquitin Ligase NEDD4-like E3 and Inhibiting Ferritinophagy Pathway(No.82104978)Scientific Research of Shaanxi Provincial Department of Education of China Project:Mechanism of Acupuncture on Microglia Activation in Mice with Cerebral Ischemia-Reperfusion(No.23JK0410)。
文摘OBJECTIVE:To systematically evaluate the role of electroacupuncture in maintaining brain plasticity in ischemic stroke mediated brain damage.METHODS:We searched for all relevant trials published through Oct 7,2022 from seven databases.Methodological quality was assessed using the CAMARADES Risk of Bias Tool.A Meta-analysis of comparative effects was performed using Review Manager v.5.3 software.RESULTS:A total of 101 studies involving 2148 animals were included.For most studies,primary outcomes results of the Meta-analysis indicate that EA significantly improved ischemic stroke rat's postsynaptic density thickness[Standardized Mean Difference(SMD)=1.41,95%confidence interval(CI)(0.59,2.23),P=0.0008],numerical density of synapses[SMD=1.55,95%CI(0.48,2.63),P=0.005]compared with non-EA-treated.Similarly,EA could improve parts of biomarkers of synapses,neurogenesis,angiogenesis and neurotrophin activity than the control group(P<0.05).CONCLUSION:The existing evidence suggests EA regulating ischemic stroke may be through brain plasticity.More rigorous and high quality studies should be conducted in the future.
基金financially supported by the China National Funds for Distinguished Young Scientists(Grant No.52025112).
文摘With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utilization,a more effective method is to install floating breakwaters near the terrain of islands and reefs.The terrain around islands and reefs is complex,and waves undergo a series of changes due to the impact of the complex terrain in transmission.It is important to find a suitable location for floating breakwater systems on islands and reefs and investigate how the terrain affects the system’s hydrodynamic performance.This paper introduces a three-cylinder floating breakwater design.The breakwater system consists of 8 units connected by elastic structures and secured by a slack mooring system.To evaluate its effectiveness,a 3D model experiment was conducted in a wave basin.During the experiment,a model resembling the islands and reefs terrain was created on the basis of the water depth map of a specific region in the East China Sea.The transmission coefficients and motion responses of the three-cylinder floating breakwater system were then measured.This was done both in the middle of and behind the islands and reefs terrain.According to the experimental results,the three-cylinder floating breakwater system performs better in terms of hydrodynamics when it is placed behind the terrain of islands and reefs than in the middle of the same terrain.
基金the National Key Research and Development Program of China(2019YFE0117000)the National Natural Science Foundation of China(32171549 and 31971465)and the Youth Innovation Promotion Association CAS(2020199).
文摘The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a significantuncertainty to synthesis and site comparisons. We investigated the responses of vegetation and soil nutrientsto drought using a network experiment of temperate grasslands in Northern China. Drought treatment (66%reduction in growing season precipitation) was imposed by erecting rainout shelters, respectively, at the driest,intermediate, and wettest sites. We found that vegetation nutrient concentrations increased but soil nutrient concentrationsdecreased along the aridity gradient. Differential responses were observed under experimentaldrought among the three grassland sites. Specifically, the experimental drought did not change vegetation andsoil nutrient status at the driest site, while strongly reduced vegetation but increased soil nutrient concentrationsat the site with intermediate precipitation. On the contrary, experimental drought increased vegetation N concentrationsbut did not change vegetation P and soil nutrient concentrations at the wettest site. In general, the differentialeffects of drought on ecosystem nutrients were observed between manipulative and observationalexperiments as well as between sites. Our research findings suggest that conducting large-scale, consistent, andcontrolled network experiments is essential to accurately evaluate the effects of global climate change on terrestrialecosystem bio-geochemistry.
基金supported by the National Natural Science Foundation of China(Grant Nos.42372153,41530315)the National Key Research and Development Program of China(Grant No.2023YFF0804300)+1 种基金the National Science and Technology Major Project of China(Grant Nos.2016ZX05066,2017ZX05064)the“Climate Change:Carbon Budget and Related Issues”Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05030100)。
文摘Although many studies based on naturally deformed samples have been carried out to investigate the pore-crack characteristics of shales,studies based on high temperature(T)and high pressure(P)deformation experiments,which can exclude sample heterogeneity factors,simulate deep T-P conditions,and generate a continuous deformation sequence,are still rare.In this study,shales with different deformation levels are generated by triaxial compression experiments,and methods including scanning electron microscopy,mercury injection,and gas sorption are utilized to characterize their influence factors and pore-crack characteristics.Results indicate that T is the primary factor influencing shale deformation when P is low,while P is dominant under high P conditions.At T<90℃ and P<60 MPa,shales undergo brittle deformation and their macropores decrease due to the compaction of primary pores,while mesopores increase because of the interconnection of micropores.At 90℃<T<200℃ and 60 MPa<P<110 MPa,shales experience brittle-ductile transitional deformation,and their macro-and micropores increase because of the extension of open cracks and the plastic deformation of clay flakes respectively,while mesopores decrease dramatically.At T>200℃ and P>110 MPa,shales are subjected to ductile deformation,and their micro-and mesopores drop significantly due to the intense compaction in the matrix while macropores continuously increase with crack expansion.The permeability of shale increases with the degree of deformation and ductile material contents are predicted to be a key factor determining whether open microcracks can be preserved after ductile deformation.To account for these experimental results,an ideal model of micro pore-crack system evolution in deformed shales is further proposed,which can provide guidance for the exploration of shale gas resources in the deep or structurally complex zones.
文摘BACKGROUND Anastomotic leaks remain one of the most dreaded complications in gastrointestinal surgery causing significant morbidity,that negatively affect the patients’quality of life.Experimental studies play an important role in understanding the pathophysiological background of anastomotic healing and there are still many fields that require further investigation.Knowledge drawn from these studies can lead to interventions or techniques that can reduce the risk of anastomotic leak in patients with high-risk features.Despite the advances in experimental protocols and techniques,designing a high-quality study is still challenging for the investigators as there is a plethora of different models used.AIM To review current state of the art for experimental protocols in high-risk anastomosis in rats.METHODS This systematic review was performed according to The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.To identify eligible studies,a comprehensive literature search was performed in the electronic databases PubMed(MEDLINE)and Scopus,covering the period from conception until 18 October 2023.RESULTS From our search strategy 102 studies were included and were categorized based on the mechanism used to create a high-risk anastomosis.Methods of assessing anastomotic healing were extracted and were individually appraised.CONCLUSION Anastomotic healing studies have evolved over the last decades,but the findings are yet to be translated into human studies.There is a need for high-quality,well-designed studies that will help to the better understanding of the pathophysiology of anastomotic healing and the effects of various interventions.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金United Arab Emirates University,Grant/Award Number:12R104 and 12R121。
文摘Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.