In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because ...In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.展开更多
Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization m...Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH_(3)volatilization in urea-amended field plots and ii)to define the critical period of NH_(3)-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m^(2))generates a value of NH_(3)-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH_(3)volatilization.This strategy enhances the power of detection of NH_(3)-N loss abatement in field experiments using chambers.展开更多
The influence of experimental error on lift force evaluated by Noca’s flux equation is studied based on adding errors into the direct numerical simulation data for flow past cylinder at Re = 100. As Noca suggested us...The influence of experimental error on lift force evaluated by Noca’s flux equation is studied based on adding errors into the direct numerical simulation data for flow past cylinder at Re = 100. As Noca suggested using the low-pass filter to get rid of the high-frequency noise in the evaluated lift force, we verify that his method is inapplicable for dealing with the dataset of 1% experimental error, although the precision is acceptable in practice. To overcome this defect, a novel method is proposed in this paper. The average of the lift forces calculated by using multiple control volume is taken as the evaluation before applying the low-pass filter. The method is applied to an experimental data for flow past a cylinder at approximately Re = 900 to verify its validation. The results show that it improves much better on evaluating the lift forces.展开更多
The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigat...The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigated. It was found that the influence of the former can neglect, but that of the latter is so prominent that the data fluctuate bitterly and linearity of the curve of the reduced viscosity vs. concentration (hsp/c^c) becomes too bad to obey the Huggins equation down to the extremely dilute region, despite the error of the flow times Dt 0.2s, which is permitted by the conventional method of viscosity measurement. Through strict mathematical analyses, it was found that the error (E) of the reduced viscosity is in proportion and inverse proportion to Dt and concentration c, respectively. So the less the concentration, the more the error is. Consequently, a lowest concentration limit cL corresponding to given experimental error may exist and it will be meaningless for further operation below cL because of the great fluctuation of the data. Therefore, it needs to seriously reconsider the application of the conventional method of Ubbelohde viscosity measurement in the extremely dilute polymer solution under traditional conditions because of the great influence of the experimental error.展开更多
Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat tra...Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.展开更多
文摘In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.
基金supported by the International Atomic Energy Agency(IAEA),Vienna,Austria through a Coordinated Research Project(No.D15016)the“Carlos Chagas Filho”Foundation for Support of Research in the State of Rio de Janeiro(FAPERJ)of Brazil with grants awarded to BJRA,CPJ,RMB,and SU and postdoctoral scholarships to MRM and SS。
文摘Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH_(3)volatilization in urea-amended field plots and ii)to define the critical period of NH_(3)-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m^(2))generates a value of NH_(3)-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH_(3)volatilization.This strategy enhances the power of detection of NH_(3)-N loss abatement in field experiments using chambers.
文摘The influence of experimental error on lift force evaluated by Noca’s flux equation is studied based on adding errors into the direct numerical simulation data for flow past cylinder at Re = 100. As Noca suggested using the low-pass filter to get rid of the high-frequency noise in the evaluated lift force, we verify that his method is inapplicable for dealing with the dataset of 1% experimental error, although the precision is acceptable in practice. To overcome this defect, a novel method is proposed in this paper. The average of the lift forces calculated by using multiple control volume is taken as the evaluation before applying the low-pass filter. The method is applied to an experimental data for flow past a cylinder at approximately Re = 900 to verify its validation. The results show that it improves much better on evaluating the lift forces.
文摘The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigated. It was found that the influence of the former can neglect, but that of the latter is so prominent that the data fluctuate bitterly and linearity of the curve of the reduced viscosity vs. concentration (hsp/c^c) becomes too bad to obey the Huggins equation down to the extremely dilute region, despite the error of the flow times Dt 0.2s, which is permitted by the conventional method of viscosity measurement. Through strict mathematical analyses, it was found that the error (E) of the reduced viscosity is in proportion and inverse proportion to Dt and concentration c, respectively. So the less the concentration, the more the error is. Consequently, a lowest concentration limit cL corresponding to given experimental error may exist and it will be meaningless for further operation below cL because of the great fluctuation of the data. Therefore, it needs to seriously reconsider the application of the conventional method of Ubbelohde viscosity measurement in the extremely dilute polymer solution under traditional conditions because of the great influence of the experimental error.
基金supported by the National Natural Science Foundation of China (Grant No. 51078053)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT11ZD105)
文摘Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.