Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of ele...Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of electronics. In order to make teachers teaching more efficiently and students studying more quickly,how to update the experimental course in teaching reform is the key point. This paper analyzing the present situation of teaching in the digital circuit and analog circuit courses,the teaching questions in universities. On the basis of it,the innovation measures of experimental teaching methods and contents are discussed. Our school tries to introduce the UltraLab network experiment platform,reform and optimize the teaching methods of related courses.And it’ s accelerating the construction and development of emerging engineering education’ s process,reducing effectively the teacher’s time for managing in equipment,improving the students’ ability to use instruments.展开更多
In recent years, attention has been focused on the spar platform for gas and oil exploitation in deep water. With the development of offshore technology, many new spar concepts have been put forward and fully studied....In recent years, attention has been focused on the spar platform for gas and oil exploitation in deep water. With the development of offshore technology, many new spar concepts have been put forward and fully studied. This paper presents the results of an experimental investigation on the hydrodynamic behavior of a new spar concept from Novellent Offshore LLC, USA, which is called Ceometrie Spar (G-spar). A new type of buoyancy can concept from the same company, viz. Integratod Buoyancy Can (IBC), is researched in the meantime. The G-spar and IBC models with a 1:70 scale are tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the global performance of the spar hull, in which the second-order wave drift force is involved, as well as the effect of heave plates on the motion characteristics and mooring force of the G-spar platform.展开更多
A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental p...A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.展开更多
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv...With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.展开更多
To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is pre...To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is presented in this work.The floating WEC system provides a power supply,while the net cages are used for aquaculture.It is designed to have an independent and self-operation breeding function.An experimental study is carried out to investigate the hydrodynamic performance of the device in a wave tank considering the factors of net cages,draft depth,and power take-off,and results show that these variables have significant effects on wave energy capture.Incident waves with short periods cause intense interactions that allow the device to undergo large relative motion.The draft depth could be determined according to wave period rather than wave height.This study also explores the response amplitude operator of the device and determines its resonance scope.The experimental results could provide reliable information for future studies on phase differences and the design of two-body WECs.展开更多
Practice training is very important for students learning Computer networks.But building a real laboratory is constrained and expensive.In this paper,we present an online experimental platform for computer networks co...Practice training is very important for students learning Computer networks.But building a real laboratory is constrained and expensive.In this paper,we present an online experimental platform for computer networks course based on Dynamips simulator.Instructors and students can access the platform by IE Browser to manage and take router experiments.On the basis of deployment and testing,the platform is effective and flexible.展开更多
In view of the key role of undergraduate experimental teaching reform in cultivating high-quality talents with both innovative spirit and practical ability,this paper deeply discusses multi-dimensional reform strategi...In view of the key role of undergraduate experimental teaching reform in cultivating high-quality talents with both innovative spirit and practical ability,this paper deeply discusses multi-dimensional reform strategies.Specifically,the teaching mode of"double teachers for every student"is innovatively introduced,and scientific research projects are deeply integrated into undergraduate experimental teaching,aiming at realizing the modern development of teaching content and the diversified expansion of teaching methods.By designing and applying the undergraduate experimental teaching platform for intelligent limb rehabilitation training based on the concept of"medical-engineering interdisciplinary crossing",it not only builds a bridge for students to contact cutting-edge scientific research and strengthen practical skills,but also provides valuable ideas and practical models for the innovation of undergraduate experimental teaching.In the future,with the continuous optimization and upgrading of platform functions,it is expected to provide students with a richer and richer learning experience and comprehensively promote students'overall quality.展开更多
The construction of the computer network experimental platform can effectively solve the existing problems in the computer network teaching, and has the vital significance for promoting the quality education, and impr...The construction of the computer network experimental platform can effectively solve the existing problems in the computer network teaching, and has the vital significance for promoting the quality education, and improving the students' practical skills. This article mainly discusses the construction of the open experimental platform of the computer network laboratory of the Shandong University, mainly introduces the software and hardware resources of the open experimental platform, and the teaching contents and teaching methods of the open experiment, and sums up the teaching effect of the open experimental platform.展开更多
The experiment platform of the aeroengine badly needs to develope in the direction of the overall supporting, the database system management and the engineering practice. Experimental means such as the water, electric...The experiment platform of the aeroengine badly needs to develope in the direction of the overall supporting, the database system management and the engineering practice. Experimental means such as the water, electricity and gas systems which support the operation of equipment, and multiple sets of engine components (the compressor, the turbine, the combustion chamber, the structural strength etc.) which support the experimental study of the engine also badly needs to improve in the direction of comprehensive monitoring and system integration to meet the needs of high efficient experiment and management. The experiment platform can make the experimental data and the experimental process be shared in different places in real time. Improving the collaborative ability of design and experiment, improving the automatic level of the experiment and so on all need the computer, the network and the professional and matching application system to support so as to guarantee the security, the stability and the reliability of the experiment, and reduce the risk of the experiment. This paper mainly discusses the main innovative exploration of experimental platform and equipment development about the current aeroengine.展开更多
Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Th...Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Things and other advanced information technologies to build an economics and management ERP virtual simulation experiment teaching platform.Cloud computing and big data,virtual simulation experiment teaching resources with"resource library+project library+enterprise management simulation sandbox training"as the core can build an online and offline collaborative and practical experiment teaching platform.It is expected to achieve the ideal effect of integration of three spaces.Such as physics and resources and social digital teaching.Moreover,it can also benefit human-computer collaboration and interactive teaching and inquiry learning.展开更多
With the advancement of vocational education reform,education informationization,and digitalization have become the important direction of the reform of electrical and electronic teaching in high vocational colleges.I...With the advancement of vocational education reform,education informationization,and digitalization have become the important direction of the reform of electrical and electronic teaching in high vocational colleges.In this context,intelligent product development of professional electrical and electronic teaching should also do a good job in practice and innovation,especially in actively building a digital experimental teaching platform and promoting the reform of experimental teaching mode,so that students can learn more useful knowledge and skills in the new platform,and cultivate more applied and skilled talents for society.While analyzing the problems existing in the traditional electrical and electronic experimental teaching mode,this paper analyzes the significance and practical path of the construction of electrical and electronic experimental teaching platforms in higher vocational colleges which can be of reference in future research.展开更多
The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could...The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.展开更多
It is an important scientific research activity in China to carry out near-space exploration and scientific experiments via aerospace carriers.Early near-space exploration projects mainly used aircraft,balloons,soundi...It is an important scientific research activity in China to carry out near-space exploration and scientific experiments via aerospace carriers.Early near-space exploration projects mainly used aircraft,balloons,sounding rockets and Earth satellites to carry out space environment exploration.With the development of China’s space science and technology,microgravity science has become a frontier science that has developed rapidly in the past 20 years.With the continuous progress of national space science and technology,the demand for near-space exploration and scientific experiments is increasing year by year.In the next 2 to 3 years,many advanced science activities and the associated technologies need to conduct corresponding experimental research work.This paper mainly analyzes the significance of scientific research and the ways to realize near-space exploration at home and abroad,and analyzes the directions and innovations that can be carried out in the future.展开更多
In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure ...In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure design and material development.Underground gas storage can provide a solution to address the intermittency of renewable energy supply.Currently,lined rock caverns(LRCs)are regarded as the best option for compressed air and hydrogen storage,since they have excellent sealing properties and minimum environmental impacts.However,the load transfer,damage,and failure mechanisms of LRCs are not clear.This prevents the design and selection of mechanical structures.Particularly,the gas sealing capacity in specific gas conditions(e.g.,stored hydrogen-induced chemical reaction)remains poorly understood,and advanced materials to adapt the storage conditions of different gases should be developed.This experimental facility aims at providing a solution to these technical issues.This facility has several different types of LRCs,and study of the mechanical behavior of various structures and evaluation of the gas-tight performance of the sealing material can be carried out using a distributed fiberoptic sensing approach.The focus of this study is on the challenges in sealing material development and structure design.This facility facilitates large-scale and long-term energy storage for stable and continuous energy supply,and enables repurposing of underground space and acceleration of the realization of green energy ambitions in the context of Paris Agreement and China's carbon neutralization plan.展开更多
This paper puts forward the plan on constructing information security attack and defense platform based on cloud computing and virtualization, provides the hardware topology structure of the platform and technical fra...This paper puts forward the plan on constructing information security attack and defense platform based on cloud computing and virtualization, provides the hardware topology structure of the platform and technical framework of the system and the experimental process and technical principle of the platform. The experiment platform can provide more than 20 attack classes. Using the virtualization technology can build hypothesized target of various types in the laboratory and diversified network structure to carry out attack and defense experiment.展开更多
Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the ...Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.展开更多
According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to s...According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~展开更多
Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
基金supported by University-level Teaching Reform Project of New Engineering,Beijing University of Chemical Technology(xgk2017040436)Teaching Reform Project of School of International Teaching,Beijing University of Chemical Technology(siejg201713)
文摘Digital circuit and analog circuit courses are basic courses for students of science and engineering universities. Among them,the practical courses are of great significance for students to master the knowledge of electronics. In order to make teachers teaching more efficiently and students studying more quickly,how to update the experimental course in teaching reform is the key point. This paper analyzing the present situation of teaching in the digital circuit and analog circuit courses,the teaching questions in universities. On the basis of it,the innovation measures of experimental teaching methods and contents are discussed. Our school tries to introduce the UltraLab network experiment platform,reform and optimize the teaching methods of related courses.And it’ s accelerating the construction and development of emerging engineering education’ s process,reducing effectively the teacher’s time for managing in equipment,improving the students’ ability to use instruments.
文摘In recent years, attention has been focused on the spar platform for gas and oil exploitation in deep water. With the development of offshore technology, many new spar concepts have been put forward and fully studied. This paper presents the results of an experimental investigation on the hydrodynamic behavior of a new spar concept from Novellent Offshore LLC, USA, which is called Ceometrie Spar (G-spar). A new type of buoyancy can concept from the same company, viz. Integratod Buoyancy Can (IBC), is researched in the meantime. The G-spar and IBC models with a 1:70 scale are tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the global performance of the spar hull, in which the second-order wave drift force is involved, as well as the effect of heave plates on the motion characteristics and mooring force of the G-spar platform.
基金supported by the National Natural Science Foundation of China (Grant Nos.60605028, 50975168)National Hi-tech Research and Development Program of China (Grant Nos.2007AA04Z225, 2009AA04Z211)+1 种基金Program for Excellent Young Teachers of Shanghai (Grant Nos.07Q14024,07QH14006)Shuguang Program of Shanghai (Grant No.07SG47)
文摘A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.
基金supported by National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.138RJZA199).
文摘With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.
基金financially supported by the Special Project for Marine Renewable Energy (No. GHME2016YY02)the National Key R&D Program of China (No. 2018YFB 1501900)+1 种基金the Shandong Provincial Natural Science Key Basic Program (No. ZR2017ZA0202)the Qingdao Municipal Science & Technology Program (No. 15-8-3-7jch)
文摘To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is presented in this work.The floating WEC system provides a power supply,while the net cages are used for aquaculture.It is designed to have an independent and self-operation breeding function.An experimental study is carried out to investigate the hydrodynamic performance of the device in a wave tank considering the factors of net cages,draft depth,and power take-off,and results show that these variables have significant effects on wave energy capture.Incident waves with short periods cause intense interactions that allow the device to undergo large relative motion.The draft depth could be determined according to wave period rather than wave height.This study also explores the response amplitude operator of the device and determines its resonance scope.The experimental results could provide reliable information for future studies on phase differences and the design of two-body WECs.
文摘Practice training is very important for students learning Computer networks.But building a real laboratory is constrained and expensive.In this paper,we present an online experimental platform for computer networks course based on Dynamips simulator.Instructors and students can access the platform by IE Browser to manage and take router experiments.On the basis of deployment and testing,the platform is effective and flexible.
基金Supported by Undergraduate Teaching Research and Reform Project of University of Shanghai for Science and Technology in 2024(JGXM24281)University-Level First-Class Undergraduate Course Construction Project of University of Shanghai for Science and Technology in 2024(YLKC202424394).
文摘In view of the key role of undergraduate experimental teaching reform in cultivating high-quality talents with both innovative spirit and practical ability,this paper deeply discusses multi-dimensional reform strategies.Specifically,the teaching mode of"double teachers for every student"is innovatively introduced,and scientific research projects are deeply integrated into undergraduate experimental teaching,aiming at realizing the modern development of teaching content and the diversified expansion of teaching methods.By designing and applying the undergraduate experimental teaching platform for intelligent limb rehabilitation training based on the concept of"medical-engineering interdisciplinary crossing",it not only builds a bridge for students to contact cutting-edge scientific research and strengthen practical skills,but also provides valuable ideas and practical models for the innovation of undergraduate experimental teaching.In the future,with the continuous optimization and upgrading of platform functions,it is expected to provide students with a richer and richer learning experience and comprehensively promote students'overall quality.
文摘The construction of the computer network experimental platform can effectively solve the existing problems in the computer network teaching, and has the vital significance for promoting the quality education, and improving the students' practical skills. This article mainly discusses the construction of the open experimental platform of the computer network laboratory of the Shandong University, mainly introduces the software and hardware resources of the open experimental platform, and the teaching contents and teaching methods of the open experiment, and sums up the teaching effect of the open experimental platform.
文摘The experiment platform of the aeroengine badly needs to develope in the direction of the overall supporting, the database system management and the engineering practice. Experimental means such as the water, electricity and gas systems which support the operation of equipment, and multiple sets of engine components (the compressor, the turbine, the combustion chamber, the structural strength etc.) which support the experimental study of the engine also badly needs to improve in the direction of comprehensive monitoring and system integration to meet the needs of high efficient experiment and management. The experiment platform can make the experimental data and the experimental process be shared in different places in real time. Improving the collaborative ability of design and experiment, improving the automatic level of the experiment and so on all need the computer, the network and the professional and matching application system to support so as to guarantee the security, the stability and the reliability of the experiment, and reduce the risk of the experiment. This paper mainly discusses the main innovative exploration of experimental platform and equipment development about the current aeroengine.
基金the 2020 University Innovation and Entrepreneurship Project of Guangdong University of Foreign Studies.
文摘Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Things and other advanced information technologies to build an economics and management ERP virtual simulation experiment teaching platform.Cloud computing and big data,virtual simulation experiment teaching resources with"resource library+project library+enterprise management simulation sandbox training"as the core can build an online and offline collaborative and practical experiment teaching platform.It is expected to achieve the ideal effect of integration of three spaces.Such as physics and resources and social digital teaching.Moreover,it can also benefit human-computer collaboration and interactive teaching and inquiry learning.
文摘With the advancement of vocational education reform,education informationization,and digitalization have become the important direction of the reform of electrical and electronic teaching in high vocational colleges.In this context,intelligent product development of professional electrical and electronic teaching should also do a good job in practice and innovation,especially in actively building a digital experimental teaching platform and promoting the reform of experimental teaching mode,so that students can learn more useful knowledge and skills in the new platform,and cultivate more applied and skilled talents for society.While analyzing the problems existing in the traditional electrical and electronic experimental teaching mode,this paper analyzes the significance and practical path of the construction of electrical and electronic experimental teaching platforms in higher vocational colleges which can be of reference in future research.
文摘The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.
文摘It is an important scientific research activity in China to carry out near-space exploration and scientific experiments via aerospace carriers.Early near-space exploration projects mainly used aircraft,balloons,sounding rockets and Earth satellites to carry out space environment exploration.With the development of China’s space science and technology,microgravity science has become a frontier science that has developed rapidly in the past 20 years.With the continuous progress of national space science and technology,the demand for near-space exploration and scientific experiments is increasing year by year.In the next 2 to 3 years,many advanced science activities and the associated technologies need to conduct corresponding experimental research work.This paper mainly analyzes the significance of scientific research and the ways to realize near-space exploration at home and abroad,and analyzes the directions and innovations that can be carried out in the future.
基金Basic Research Program of Jiangsu Province,Grant/Award Numbers:BK20221135,BK20243024,BM2022009National Key Research and Development Program of China,Grant/Award Number:2022YFC3003300+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:42230704,42307202Young Elite Scientists Sponsorship Program by CAST,Grant/Award Number:2023QNRC001Xuzhou Science and Technology Program,Grant/Award Numbers:KC23383,KC23427。
文摘In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure design and material development.Underground gas storage can provide a solution to address the intermittency of renewable energy supply.Currently,lined rock caverns(LRCs)are regarded as the best option for compressed air and hydrogen storage,since they have excellent sealing properties and minimum environmental impacts.However,the load transfer,damage,and failure mechanisms of LRCs are not clear.This prevents the design and selection of mechanical structures.Particularly,the gas sealing capacity in specific gas conditions(e.g.,stored hydrogen-induced chemical reaction)remains poorly understood,and advanced materials to adapt the storage conditions of different gases should be developed.This experimental facility aims at providing a solution to these technical issues.This facility has several different types of LRCs,and study of the mechanical behavior of various structures and evaluation of the gas-tight performance of the sealing material can be carried out using a distributed fiberoptic sensing approach.The focus of this study is on the challenges in sealing material development and structure design.This facility facilitates large-scale and long-term energy storage for stable and continuous energy supply,and enables repurposing of underground space and acceleration of the realization of green energy ambitions in the context of Paris Agreement and China's carbon neutralization plan.
文摘This paper puts forward the plan on constructing information security attack and defense platform based on cloud computing and virtualization, provides the hardware topology structure of the platform and technical framework of the system and the experimental process and technical principle of the platform. The experiment platform can provide more than 20 attack classes. Using the virtualization technology can build hypothesized target of various types in the laboratory and diversified network structure to carry out attack and defense experiment.
基金financially supported by the National Natural Science Foundation of China (Nos.51774137 and 51804121)。
文摘Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.
基金Supported by the National Key Basic Research Development Program of China(No.2014CB046405)the National Natural Science Foundation of China(No.51475406,51405423)the Hebei Youth Fund(No.QN20132017)
文摘According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.