期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Two Performance Indicators Assisted Infill Strategy for Expensive Many⁃Objective Optimization
1
作者 Yi Zhao Jianchao Zeng Ying Tan 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期24-40,共17页
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i... In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems. 展开更多
关键词 expensive multi⁃objective optimization problems infill sample strategy evolutionary optimization algorithm
在线阅读 下载PDF
A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems 被引量:2
2
作者 Meiji Cui Li Li +3 位作者 MengChu Zhou Jiankai Li Abdullah Abusorrah Khaled Sedraoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1952-1966,共15页
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat... This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization. 展开更多
关键词 Autoencoder dimension reduction evolutionary algorithm medium-scale expensive problems teaching-learning-based optimization
在线阅读 下载PDF
A Line Complex-Based Evolutionary Algorithm for Many-Objective Optimization 被引量:3
3
作者 Liang Zhang Qi Kang +2 位作者 Qi Deng Luyuan Xu Qidi Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1150-1167,共18页
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo... In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs. 展开更多
关键词 Environmental selection line complex many-objective optimization problems(MaOPs) Plücker coordinate
在线阅读 下载PDF
Hybrid Meta-Model Based Design Space Differentiation Method for Expensive Problems 被引量:1
4
作者 Nianfei Gan Guangyao Li Jichao Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第2期120-132,共13页
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p... In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance. 展开更多
关键词 hybrid meta-model design space differentiation expensive problems global optimization
原文传递
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
5
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
An Optimization Algorithm Employing Multiple Metamodels and Optimizers 被引量:2
6
作者 Yoel Tenne 《International Journal of Automation and computing》 EI CSCD 2013年第3期227-241,共15页
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,... Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. 展开更多
关键词 expensive optimization problems computational intelligence adaptive algorithms METAMODELLING model selection.
原文传递
Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems 被引量:3
7
作者 Zhihua Cui Lihong Zhao +3 位作者 Youqian Zeng Yeqing Ren Wensheng Zhang Xiao-Zhi Gao 《Complex System Modeling and Simulation》 2021年第4期291-307,共17页
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex... With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions. 展开更多
关键词 pigeon-inspired optimization algorithm many-objective optimization problem multiple selection strategy elite individual retention
原文传递
Evolutionary Computation for Expensive Optimization:A Survey 被引量:12
8
作者 Jian-Yu Li Zhi-Hui Zhan Jun Zhang 《Machine Intelligence Research》 EI CSCD 2022年第1期3-23,共21页
Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for t... Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation(EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently. 展开更多
关键词 expensive optimization problem evolutionary computation evolutionary algorithm swarm intelligence particle swarm optimization differential evolution
原文传递
A many-objective evolutionary algorithm based on decomposition with dynamic resource allocation for irregular optimization 被引量:5
9
作者 Ming-gang DONG Bao LIU Chao JING 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第8期1171-1190,共20页
The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To addre... The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To address such issues,current approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front.Considering this situation,we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation(Ma OEA/D-DRA)for irregular optimization.The proposed algorithm can dynamically allocate computing resources to different search areas according to different shapes of the problem’s Pareto front.An evolutionary population and an external archive are used in the search process,and information extracted from the external archive is used to guide the evolutionary population to different search regions.The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several subproblems,and all the subproblems are optimized in a collaborative manner.The external archive is updated with the method of rithms using a variety of test problems with irregular Pareto front.Experimental results show that the proposed algorithèm out-p£performs these five algorithms with respect to convergence speed and diversity of population members.By comparison with the weighted-sum approach and penalty-based boundary intersection approach,there is an improvement in performance after integration of the Tchebycheff approach into the proposed algorithm. 展开更多
关键词 many-objective optimization problems Irregular Pareto front External archive Dynamic resource allocation Shift-based density estimation Tchebycheff approach
原文传递
Large-Scale Expensive Optimization with a Switching Strategy
10
作者 Mai Sun Chaoli Sun +2 位作者 Xiaobo Li Guochen Zhang Farooq Akhtar 《Complex System Modeling and Simulation》 2022年第3期253-263,共11页
Some optimization problems in scientific research,such as the robustness optimization for the Internet of Things and the neural architecture search,are large-scale in decision space and expensive for objective evaluat... Some optimization problems in scientific research,such as the robustness optimization for the Internet of Things and the neural architecture search,are large-scale in decision space and expensive for objective evaluation.In order to get a good solution in a limited budget for the large-scale expensive optimization,a random grouping strategy is adopted to divide the problem into some low-dimensional sub-problems.A surrogate model is then trained for each sub-problem using different strategies to select training data adaptively.After that,a dynamic infill criterion is proposed corresponding to the models currently used in the surrogate-assisted sub-problem optimization.Furthermore,an escape mechanism is proposed to keep the diversity of the population.The performance of the method is evaluated on CEC’2013 benchmark functions.Experimental results show that the algorithm has better performance in solving expensive large-scale optimization problems. 展开更多
关键词 large-scale optimization problems computationally expensive problems random grouping surrogate models
原文传递
基于粒子飞行动态径向基代理模型的辐射屏蔽优化设计
11
作者 高帅 管兴胤 +5 位作者 卢毅 叶洋 袁媛 郝帅 胡启航 张勇 《核技术》 北大核心 2025年第2期133-143,共11页
针对辐射屏蔽优化设计中存在的消耗时间长、优化效率低的问题,提出一种基于粒子飞行样本更新策略的动态径向基代理模型。首先采用径向基神经网络建立真实目标函数的初始代理模型,然后通过差分进化算法对代理模型进行全局寻优,然后基于... 针对辐射屏蔽优化设计中存在的消耗时间长、优化效率低的问题,提出一种基于粒子飞行样本更新策略的动态径向基代理模型。首先采用径向基神经网络建立真实目标函数的初始代理模型,然后通过差分进化算法对代理模型进行全局寻优,然后基于代理模型寻优结果和粒子飞行样本更新策略产生新样本点,最后将新样本点加入原有样本点后重新更新代理模型并循环迭代,直至满足收敛条件。该方法以代理模型拟合精度为依据控制原有样本点向随机样本点和最优预测样本点的飞行速度,可以实现动态代理模型全局探索与局部探索的自适应平衡。为验证方法的有效性,将所提方法应用于12个数值测试函数和船用反应堆辐射屏蔽优化设计工程实例,并与其他优化方法计算结果进行对比。结果表明:对于数值测试函数,所提方法在寻优结果、样本点数量和算法鲁棒性方面均具有显著优势,对于辐射屏蔽优化设计实例,所提方法得到的中子透射率为另外两种方法的48%和8%,所需样本点数量为静态代理模型的25%,证明该方法是求解辐射屏蔽优化等昂贵优化问题的有效方法。 展开更多
关键词 粒子飞行 径向基函数 动态代理模型 辐射屏蔽优化 昂贵优化问题
原文传递
基于动态分布计算资源的昂贵多目标优化算法
12
作者 张晶 裴东兴 +1 位作者 马瑾 沈大伟 《高技术通讯》 北大核心 2025年第8期861-867,共7页
代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态... 代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态分布计算资源的昂贵多目标优化算法,该算法提出了自适应选择模型更新策略。具体地,依据模型对当前种群估值的不确定度来判断模型的性能,当种群中解不确定度的中值大于均值时,该目标函数模型被选择进行更新;当种群中的解不确定度的中值小于均值时,该模型不被更新。为了验证该策略的有效性,将该策略用于代理模型辅助的自适应贝叶斯优化算法(an adaptive Bayesian approach to surrogate-assisted evolutionary algorithm,ABSAEA)和代理模型辅助的参考向量引导的进化算法(surrogate-assisted reference vector guided evolutionary algorithm,KRVEA)中,并且在DTLZ函数上进行实验。实验结果表明,该算法可以显著降低昂贵多目标优化算法的计算复杂度。 展开更多
关键词 进化算法 昂贵多目标优化问题 代理模型 填充准则 不确定度
在线阅读 下载PDF
基于自适应采样策略的模糊分类代理辅助进化算法
13
作者 李二超 吴煜 《郑州大学学报(工学版)》 北大核心 2025年第2期51-59,共9页
针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策... 针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策略提高选择压力,兼顾收敛性与多样性,同时利用十折交叉验证得到精度信息用来划分状态;最后,设计了一种自适应模型管理策略,其考虑当前种群的收敛性、多样性和不确定性,并根据不同精度状态采用有针对性的采样方式,该算法能够在保证整体性能的前提下,合理减少真实评估次数。为验证所提算法性能,将该算法与其他4种算法在MaF、WFG测试集和汽车侧面碰撞设计与驾驶室设计的实际工程问题上进行了分析对比实验,实验结果表明:所提算法在有限次评估条件下,在解决昂贵多目标优化问题时具有较好的竞争力。 展开更多
关键词 代理辅助进化算法 代理模型 昂贵多目标优化问题 模型管理
在线阅读 下载PDF
数据驱动的智能计算及其应用研究综述
14
作者 戴瑞 介婧 +2 位作者 王万良 叶倩琳 吴菲 《浙江大学学报(工学版)》 北大核心 2025年第2期227-248,共22页
为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和... 为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和自适应DDICs中的不同技术点,剖析了DDICs在解决EOPs时所面临的挑战与机遇.提出未来研究的潜在发展趋势,如进行更深层次的理论分析、探索新颖的学习范式及其在更多不同实际领域中的应用等,旨在为研究者提供有针对性的参考与方向,激发创新思路,从而更有效地应对实际应用中的各种复杂EOPs. 展开更多
关键词 数据驱动优化 代理辅助优化 智能计算 自适应学习 昂贵优化问题
在线阅读 下载PDF
支持代理的元启发算法解决高维计算昂贵问题研究综述
15
作者 王红 康玲 郭雨林 《计算机工程与应用》 北大核心 2025年第22期75-91,共17页
高维且计算昂贵的优化问题广泛存在于能源与资源优化、城市与环境、工业设计与制造、航空航天及通信与信息等领域。维度的增长带来搜索空间的扩大,计算昂贵限制真实解的评价次数,使得原有的优化算法失效。基于代理的元启发算法,使用代... 高维且计算昂贵的优化问题广泛存在于能源与资源优化、城市与环境、工业设计与制造、航空航天及通信与信息等领域。维度的增长带来搜索空间的扩大,计算昂贵限制真实解的评价次数,使得原有的优化算法失效。基于代理的元启发算法,使用代理模型替代昂贵的真实函数适应度评估,借助元启发算法指导优化方向,可以在保持优化精度的同时显著减少计算时间和成本。针对工程应用中优化问题高维且计算昂贵的特点,从初始样例点生成、代理模型构建与更新、进化算法使用、探索与开发平衡、自适应性设计、实际应用几个角度对近年基于代理的元启发算法文献进行整理,归纳总结基于代理的元启发算法如何应对这两大挑战。最后就目前研究不充分的问题,给出了未来发展方向。 展开更多
关键词 代理模型 元启发算法 高维度 计算昂贵优化问题 探索与开发
在线阅读 下载PDF
基于约束预测改进聚合策略的多目标并行代理优化方法
16
作者 肖甜丽 吴锋 林成龙 《计算机集成制造系统》 北大核心 2025年第7期2578-2590,共13页
针对并行计算环境下的昂贵约束多目标优化求解高耗时问题,提出了基于约束预测改进聚合策略的多目标并行代理优化方法.该方法在预测改进函数分解的基础上构建约束预测改进聚合策略,采用最大化距离分解函数实现多点并行设计,并在并行计算... 针对并行计算环境下的昂贵约束多目标优化求解高耗时问题,提出了基于约束预测改进聚合策略的多目标并行代理优化方法.该方法在预测改进函数分解的基础上构建约束预测改进聚合策略,采用最大化距离分解函数实现多点并行设计,并在并行计算环境下实现多点仿真的同步估计。该方法一方面充分利用实际工程中丰富的计算资源,实现优化设计效率的进一步提升;另一方面,所构造的约束预测改进聚合策略仅进行一维积分运算,具有计算复杂度低的优势。测试算例及自发电缓冲背架优化结果表明:所提方法可有效提升昂贵多目标约束优化问题的优化效率,进一步缩短优化设计所需计算时间;与同类方法相比,Pareto优化解具有良好的质量特性,在解的收敛性、空间分布性及多样性方面均具有一定优势。 展开更多
关键词 昂贵多目标优化问题 KRIGING模型 约束预测改进聚合准则 并行代理优化 自发电缓冲背架设计
在线阅读 下载PDF
模型辅助的计算费时进化高维多目标优化 被引量:13
17
作者 孙超利 李贞 金耀初 《自动化学报》 EI CAS CSCD 北大核心 2022年第4期1119-1128,共10页
代理模型能够辅助进化算法在计算资源有限的情况下加快找到问题的最优解集,因此建立高效的代理模型辅助多目标进化搜索逐渐受到了重视.然而随着目标数量的增加,对每个目标分别建立高斯过程模型时个体整体估值的不确定度会随之增加.因此... 代理模型能够辅助进化算法在计算资源有限的情况下加快找到问题的最优解集,因此建立高效的代理模型辅助多目标进化搜索逐渐受到了重视.然而随着目标数量的增加,对每个目标分别建立高斯过程模型时个体整体估值的不确定度会随之增加.因此通过对模型最优解集的搜索探索原问题潜在的非支配解集,并基于个体的收敛性,种群的多样性和估值的不确定度,提出了一种新的期望提高计算方法,用于辅助从潜在的非支配解集中选择使用真实目标函数计算的个体,从而更新代理模型,能够在有限的计算资源下更有效地辅助优化算法找到好的非支配解集.在7个DTLZ基准测试问题上的实验对比结果表明,该算法在求解计算费时高维多目标优化问题上是有效的,且具有较强的竞争力. 展开更多
关键词 高维多目标优化 代理模型 计算费时问题 填充准则
在线阅读 下载PDF
求解复杂多目标优化问题MOEA/D-GEP算法 被引量:9
18
作者 张冬梅 龚小胜 +1 位作者 戴光明 彭雷 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期33-36,共4页
针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入... 针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入下一次真实适应值的计算.采用国际公认的ZDT,DTLZ等测试函数进行实验验证,并与MOEA/D-EGO演化多目标优化算法进行了比较.实验结果表明:该算法在IGD性能指标上有较好的表现,说明将演化建模技术引入MOEA/D算法提高了种群个体分布模型的精度,降低了求解复杂多目标优化问题的计算成本. 展开更多
关键词 复杂多目标优化问题 全局优化算法 基于表达式编程 演化多目标优化 MOEA/D-GEP
原文传递
基于径向空间划分的昂贵多目标进化算法 被引量:5
19
作者 顾清华 周煜丰 +1 位作者 李学现 阮顺领 《自动化学报》 EI CAS CSCD 北大核心 2022年第10期2564-2584,共21页
为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空... 为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空间信息保留对种群贡献更高的个体;之后由径向空间中个体的位置分布决定下一步应该选择哪些个体进行真实评估;最后,采用一种双档案管理策略维护代理模型的质量.数值实验和现实问题上的结果表明,与5种先进算法相比,该算法在解决昂贵多目标优化问题时能够提供更高质量的解. 展开更多
关键词 昂贵多目标优化问题 高斯过程 径向投影 双档案管理策略
在线阅读 下载PDF
基于估值不确定度排序顺序均值采样的昂贵高维多目标进化算法 被引量:3
20
作者 王浩 孙超利 张国晨 《控制与决策》 EI CSCD 北大核心 2023年第12期3317-3326,共10页
模型管理,特别是训练样本的选择和填充采样准则,是影响昂贵多目标优化算法求解性能的重要因素.为此,选择样本库中具有较好目标函数值的若干个体作为样本训练目标函数的代理模型,使用基于参考向量的进化算法搜索模型的最优解集,并提出一... 模型管理,特别是训练样本的选择和填充采样准则,是影响昂贵多目标优化算法求解性能的重要因素.为此,选择样本库中具有较好目标函数值的若干个体作为样本训练目标函数的代理模型,使用基于参考向量的进化算法搜索模型的最优解集,并提出一种基于个体目标函数估值不确定度排序顺序均值的采样策略,从该最优解集中选择两个个体进行真实的目标函数评价.为了验证算法的有效性,将所提出算法在DTLZ和WFG多目标优化测试问题和两个实际工程优化问题上进行测试,并与其他5种优秀的同类型算法进行结果对比.实验结果表明,所提出算法在求解昂贵高维多目标优化问题上是有效的. 展开更多
关键词 昂贵高维多目标优化 代理模型 填充采样准则 高斯过程模型 不确定度
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部