期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
Two Performance Indicators Assisted Infill Strategy for Expensive Many⁃Objective Optimization
1
作者 Yi Zhao Jianchao Zeng Ying Tan 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期24-40,共17页
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i... In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems. 展开更多
关键词 expensive multi⁃objective optimization problems infill sample strategy evolutionary optimization algorithm
在线阅读 下载PDF
Surrogate-assisted differential evolution using manifold learning-based sampling for highdimensional expensive constrained optimization problems
2
作者 Teng LONG Nianhui YE +2 位作者 Rong CHEN Renhe SHI Baoshou ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期252-270,共19页
To address the challenges of high-dimensional constrained optimization problems with expensive simulation models,a Surrogate-Assisted Differential Evolution using Manifold Learning-based Sampling(SADE-MLS)is proposed.... To address the challenges of high-dimensional constrained optimization problems with expensive simulation models,a Surrogate-Assisted Differential Evolution using Manifold Learning-based Sampling(SADE-MLS)is proposed.In SADE-MLS,differential evolution operators are executed to generate numerous high-dimensional candidate points.To alleviate the curse of dimensionality,a Manifold Learning-based Sampling(MLS)mechanism is developed to explore the high-dimensional design space effectively.In MLS,the intrinsic dimensionality of the candidate points is determined by a maximum likelihood estimator.Then,the candidate points are mapped into a low-dimensional space using the dimensionality reduction technique,which can avoid significant information loss during dimensionality reduction.Thus,Kriging surrogates are constructed in the low-dimensional space to predict the responses of the mapped candidate points.The candidate points with high constrained expected improvement values are selected for global exploration.Moreover,the local search process assisted by radial basis function and differential evolution is performed to exploit the design space efficiently.Several numerical benchmarks are tested to compare SADE-MLS with other algorithms.Finally,SADE-MLS is successfully applied to a solid rocket motor multidisciplinary optimization problem and a re-entry vehicle aerodynamic optimization problem,with the total impulse and lift to drag ratio being increased by 32.7%and 35.5%,respec-tively.The optimization results demonstrate the practicality and effectiveness of the proposed method in real engineering practices. 展开更多
关键词 Surrogate-assisted differential evolution Dimensionality reduction Solid rocket motor Re-entry vehicle expensive constrained optimization
原文传递
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
3
作者 Fangzhen Ge Yating Wu +1 位作者 Debao Chen Longfeng Shen 《Intelligent Automation & Soft Computing》 2024年第2期189-211,共23页
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive. 展开更多
关键词 many-objective optimization evolutionary algorithm Pareto dominance reference vector adaptive niche
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
4
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
An ε-domination based two-archive 2 algorithm for many-objective optimization 被引量:3
5
作者 WU Tianwei AN Siguang +1 位作者 HAN Jianqiang SHENTU Nanying 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期156-169,共14页
The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals i... The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals in DA are selected based on the traditional Pareto dominance which decreases the selection pressure in the high-dimensional problems.The traditional algorithm even cannot converge due to the weak selection pressure.Meanwhile,Two_Arch2 adopts DA as the output of the algorithm which is hard to maintain diversity and coverage of the final solutions synchronously and increase the complexity of the algorithm.To increase the evolutionary pressure of the algorithm and improve distribution and convergence of the final solutions,an ε-domination based Two_Arch2 algorithm(ε-Two_Arch2) for many-objective problems(MaOPs) is proposed in this paper.In ε-Two_Arch2,to decrease the computational complexity and speed up the convergence,a novel evolutionary framework with a fast update strategy is proposed;to increase the selection pressure,ε-domination is assigned to update the individuals in DA;to guarantee the uniform distribution of the solution,a boundary protection strategy based on I_(ε+) indicator is designated as two steps selection strategies to update individuals in CA.To evaluate the performance of the proposed algorithm,a series of benchmark functions with different numbers of objectives is solved.The results demonstrate that the proposed method is competitive with the state-of-the-art multi-objective evolutionary algorithms and the efficiency of the algorithm is significantly improved compared with Two_Arch2. 展开更多
关键词 many-objective optimization ε-domination boundary protection strategy two-archive algorithm
在线阅读 下载PDF
A Line Complex-Based Evolutionary Algorithm for Many-Objective Optimization 被引量:3
6
作者 Liang Zhang Qi Kang +2 位作者 Qi Deng Luyuan Xu Qidi Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1150-1167,共18页
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo... In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs. 展开更多
关键词 Environmental selection line complex many-objective optimization problems(MaOPs) Plücker coordinate
在线阅读 下载PDF
A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems 被引量:2
7
作者 Meiji Cui Li Li +3 位作者 MengChu Zhou Jiankai Li Abdullah Abusorrah Khaled Sedraoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1952-1966,共15页
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat... This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization. 展开更多
关键词 Autoencoder dimension reduction evolutionary algorithm medium-scale expensive problems teaching-learning-based optimization
在线阅读 下载PDF
Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments
8
作者 Mengkai Zhao Zhixia Zhang +2 位作者 Tian Fan Wanwan Guo Zhihua Cui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2425-2450,共26页
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately u... Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects. 展开更多
关键词 Hybrid cloud environment task scheduling many-objective optimization model many-objective optimization algorithm
在线阅读 下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
9
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
在线阅读 下载PDF
A ε-indicator-based shuffled frog leaping algorithm for many-objective optimization problems
10
作者 WANG Na SU Yuchao +2 位作者 CHEN Xiaohong LI Xia LIU Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期142-155,共14页
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu... Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors. 展开更多
关键词 evolutionary algorithm many-objective optimization shuffled frog leaping algorithm(SFLA) ε-indicator
在线阅读 下载PDF
An Optimization Algorithm Employing Multiple Metamodels and Optimizers 被引量:2
11
作者 Yoel Tenne 《International Journal of Automation and computing》 EI CSCD 2013年第3期227-241,共15页
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,... Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. 展开更多
关键词 expensive optimization problems computational intelligence adaptive algorithms METAMODELLING model selection.
原文传递
Hybrid Meta-Model Based Design Space Differentiation Method for Expensive Problems 被引量:1
12
作者 Nianfei Gan Guangyao Li Jichao Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第2期120-132,共13页
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p... In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance. 展开更多
关键词 hybrid meta-model design space differentiation expensive problems global optimization
原文传递
The Optimization of Manufacturing Resources Allocation Considering the Geographical Distribution
13
作者 Ceyuan Liang Lijun He Guangyu Zhu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期78-88,共11页
From the perspective of the geographical distribution, considering production fare, supply chain information and quality rating of the manufacturing resource(MR), a manufacturing resource allocation(MRA) model conside... From the perspective of the geographical distribution, considering production fare, supply chain information and quality rating of the manufacturing resource(MR), a manufacturing resource allocation(MRA) model considering the geographical distribution in cloud manufacturing(CM) environment is built. The model includes two stages, preliminary selection stage and optimal selection stage. The membership function is used to select MRs from cloud resource pool(CRP) in the first stage, and then the candidate resource pool is built. In the optimal selection stage, a multi-objective optimization algorithm, particle swarm optimization(PSO) based on the method of relative entropy of fuzzy sets(REFS_PSO), is used to select optimal MRs from the candidate resource pool, and an optimal manufacturing resource supply chain is obtained at last. To verify the performance of REFS_PSO, NSGA-Ⅱ and PSO based on random weighting(RW_PSO) are selected as the comparison algorithms. They all are used to select optimal MRs at the second stage. The experimental results show solution obtained by REFS_PSO is the best. The model and the method proposed are appropriate for MRA in CM. 展开更多
关键词 cloud manufacturing resource optimization ALLOCATION Fuzzy SETS RELATIVE Entropy many-objective optimization supply CHAIN
在线阅读 下载PDF
基于粒子飞行动态径向基代理模型的辐射屏蔽优化设计
14
作者 高帅 管兴胤 +5 位作者 卢毅 叶洋 袁媛 郝帅 胡启航 张勇 《核技术》 北大核心 2025年第2期133-143,共11页
针对辐射屏蔽优化设计中存在的消耗时间长、优化效率低的问题,提出一种基于粒子飞行样本更新策略的动态径向基代理模型。首先采用径向基神经网络建立真实目标函数的初始代理模型,然后通过差分进化算法对代理模型进行全局寻优,然后基于... 针对辐射屏蔽优化设计中存在的消耗时间长、优化效率低的问题,提出一种基于粒子飞行样本更新策略的动态径向基代理模型。首先采用径向基神经网络建立真实目标函数的初始代理模型,然后通过差分进化算法对代理模型进行全局寻优,然后基于代理模型寻优结果和粒子飞行样本更新策略产生新样本点,最后将新样本点加入原有样本点后重新更新代理模型并循环迭代,直至满足收敛条件。该方法以代理模型拟合精度为依据控制原有样本点向随机样本点和最优预测样本点的飞行速度,可以实现动态代理模型全局探索与局部探索的自适应平衡。为验证方法的有效性,将所提方法应用于12个数值测试函数和船用反应堆辐射屏蔽优化设计工程实例,并与其他优化方法计算结果进行对比。结果表明:对于数值测试函数,所提方法在寻优结果、样本点数量和算法鲁棒性方面均具有显著优势,对于辐射屏蔽优化设计实例,所提方法得到的中子透射率为另外两种方法的48%和8%,所需样本点数量为静态代理模型的25%,证明该方法是求解辐射屏蔽优化等昂贵优化问题的有效方法。 展开更多
关键词 粒子飞行 径向基函数 动态代理模型 辐射屏蔽优化 昂贵优化问题
原文传递
基于动态分布计算资源的昂贵多目标优化算法
15
作者 张晶 裴东兴 +1 位作者 马瑾 沈大伟 《高技术通讯》 北大核心 2025年第8期861-867,共7页
代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态... 代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态分布计算资源的昂贵多目标优化算法,该算法提出了自适应选择模型更新策略。具体地,依据模型对当前种群估值的不确定度来判断模型的性能,当种群中解不确定度的中值大于均值时,该目标函数模型被选择进行更新;当种群中的解不确定度的中值小于均值时,该模型不被更新。为了验证该策略的有效性,将该策略用于代理模型辅助的自适应贝叶斯优化算法(an adaptive Bayesian approach to surrogate-assisted evolutionary algorithm,ABSAEA)和代理模型辅助的参考向量引导的进化算法(surrogate-assisted reference vector guided evolutionary algorithm,KRVEA)中,并且在DTLZ函数上进行实验。实验结果表明,该算法可以显著降低昂贵多目标优化算法的计算复杂度。 展开更多
关键词 进化算法 昂贵多目标优化问题 代理模型 填充准则 不确定度
在线阅读 下载PDF
基于自适应采样策略的模糊分类代理辅助进化算法
16
作者 李二超 吴煜 《郑州大学学报(工学版)》 北大核心 2025年第2期51-59,共9页
针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策... 针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策略提高选择压力,兼顾收敛性与多样性,同时利用十折交叉验证得到精度信息用来划分状态;最后,设计了一种自适应模型管理策略,其考虑当前种群的收敛性、多样性和不确定性,并根据不同精度状态采用有针对性的采样方式,该算法能够在保证整体性能的前提下,合理减少真实评估次数。为验证所提算法性能,将该算法与其他4种算法在MaF、WFG测试集和汽车侧面碰撞设计与驾驶室设计的实际工程问题上进行了分析对比实验,实验结果表明:所提算法在有限次评估条件下,在解决昂贵多目标优化问题时具有较好的竞争力。 展开更多
关键词 代理辅助进化算法 代理模型 昂贵多目标优化问题 模型管理
在线阅读 下载PDF
基于模糊分类预选的代理辅助多目标进化算法
17
作者 李二超 吴煜 《控制与决策》 北大核心 2025年第2期553-562,共10页
深入探究实际工程问题后,发现求解昂贵高维多目标优化问题的需求正在逐渐增多.一般回归模型求解这类问题时,模型累积误差和运算量会急剧增加.为更好地提高代理辅助进化算法的搜索效率,并平衡高维多目标问题中种群的收敛性与多样性,提出... 深入探究实际工程问题后,发现求解昂贵高维多目标优化问题的需求正在逐渐增多.一般回归模型求解这类问题时,模型累积误差和运算量会急剧增加.为更好地提高代理辅助进化算法的搜索效率,并平衡高维多目标问题中种群的收敛性与多样性,提出一种基于模糊分类预选策略的代理辅助进化算法(fuzzy classification preselection based surrogate-assisted multi-objective evolutionary algorithm,FCPSEA).首先,初始化种群并进行昂贵评估,凭借非支配关系与拥挤度构造两档训练样本集;然后,利用训练样本和双档案算子来较为准确地引导分类器分类;最后,提出一种基于模糊分类预选的模型管理策略,根据预测的双档案类标签与隶属度来设置模型管理策略.为验证所提算法的性能,在包含各种特征的两组测试问题上与近几年的经典算法进行对比实验.实验结果表明,所提出的算法在求解昂贵高维多目标优化问题上具有较强的竞争力. 展开更多
关键词 代理辅助进化算法 昂贵高维多目标优化 分类预选 分类代理模型 模型管理 进化算法
原文传递
基于增量Kriging模型辅助的双指标采样昂贵高维优化算法
18
作者 李二超 唐静 《南京师范大学学报(工程技术版)》 2025年第2期1-13,共13页
针对昂贵的高维多目标优化问题,性能指标选择机制在评估候选解的收敛性与多样性方面发挥了关键作用.然而,由于实际函数求值受限,这些机制在应对昂贵问题时面临挑战.同时,依赖单一指标可能引入偏差,使得平衡种群的收敛性与多样性变得困难... 针对昂贵的高维多目标优化问题,性能指标选择机制在评估候选解的收敛性与多样性方面发挥了关键作用.然而,由于实际函数求值受限,这些机制在应对昂贵问题时面临挑战.同时,依赖单一指标可能引入偏差,使得平衡种群的收敛性与多样性变得困难.为了解决这些问题,本文提出了一种基于增量Kriging模型辅助的双指标采样昂贵高维优化算法.首先,通过引入增量Kriging模型来近似计算昂贵的目标函数,有效降低了计算成本与时间成本.其次,采用一种基于最值双指标选择的随机排序选择机制作为一种有效的模型管理策略,该策略采用I_(ε+)(x,y)和I_(SDE)(x,y)指标同时评估候选解的质量,进一步提高了搜索效率,最终实现了收敛性与多样性的平衡.为验证算法的有效性,在DTLZ和WFG多目标优化测试问题以及实际工程优化问题上进行了测试,并将其与近年来提出的5种优秀的同类型算法进行了结果对比.实验结果表明,本文提出的算法在求解昂贵高维多目标优化问题上具有显著的有效性. 展开更多
关键词 昂贵高维多目标优化 代理辅助进化算法 增量Kriging模型 模型管理 性能指标 填充准则
在线阅读 下载PDF
数据驱动的智能计算及其应用研究综述
19
作者 戴瑞 介婧 +2 位作者 王万良 叶倩琳 吴菲 《浙江大学学报(工学版)》 北大核心 2025年第2期227-248,共22页
为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和... 为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和自适应DDICs中的不同技术点,剖析了DDICs在解决EOPs时所面临的挑战与机遇.提出未来研究的潜在发展趋势,如进行更深层次的理论分析、探索新颖的学习范式及其在更多不同实际领域中的应用等,旨在为研究者提供有针对性的参考与方向,激发创新思路,从而更有效地应对实际应用中的各种复杂EOPs. 展开更多
关键词 数据驱动优化 代理辅助优化 智能计算 自适应学习 昂贵优化问题
在线阅读 下载PDF
基于多准则并行采样的昂贵多目标优化
20
作者 秦淑芬 孙超利 《控制与决策》 北大核心 2025年第7期2281-2289,共9页
实际仿真模拟辅助设计的多目标优化问题,完成一次性能评估的成本代价极其昂贵.基于历史数据训练廉价的代理模型,辅助多目标优化算法求解昂贵多目标优化问题,是目前主流方法之一.然而,当优化目标数量增多时,将面临模型管理中如何选取新... 实际仿真模拟辅助设计的多目标优化问题,完成一次性能评估的成本代价极其昂贵.基于历史数据训练廉价的代理模型,辅助多目标优化算法求解昂贵多目标优化问题,是目前主流方法之一.然而,当优化目标数量增多时,将面临模型管理中如何选取新样本改善模型质量的困难.为此,从多个目标估值与其可靠性平衡、解的收敛性和多样性自适应平衡、当前样本分布三方面考虑,分别提出基于线性组合置信下界函数、自适应性能平衡函数、标量偏差矩阵的3个采样准则,并行选取若干个体进行真实函数评价后填充样本集,提高模型引导多目标优化算法寻优效率.同时,引入非支配样本引导当前种群搜索,加快定位最优区域.最后应用两个经典多目标问题集和两个优化实例,与5个先进算法比较,验证了所提算法的有效性. 展开更多
关键词 昂贵多目标优化 代理模型辅助进化搜索 多准则并行采样 性能平衡 标量偏差矩阵
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部