We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and te...We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and temperature variations,we verify that the full compressible Navier-Stokes-Korteweg equations admit a unique strong solution as long as the solution of the limiting system exists,when the Mach number is sufficiently small.Furthermore,we deduce the uniform convergence of strong solutions for the compressible system toward those for the corresponding incompressible system on the time interval in which the solution exists.展开更多
In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as...In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global min...We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the glob...In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.展开更多
托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantu...托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantum esse,being as beinginjeneral)。他在论证是自身时强调实在意义上的是重于逻辑意义的是。是(being)包括本质(essence)与存在(existence);本质(essence)与存在(existence)皆为是者(beings)。而存在(existence)先于本质(essence);存在(existence)是是(being)之最具体的、个别的、实体的、独一无二的完美实现(act)。托马斯.阿奎那的存在论哲学颠覆了传统哲学中存在与本质的位置,它以一种存在主义代替本质主义,从而在形而上学历史上掀起一场革命。展开更多
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the...Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the first initial-boundary value problem or the nonstationary floW of non-Newtonian viscous incompressiblee fluid through the slit dice. MethodsThe monotone operator theory and the Schauder's fixal point theorem were used. Results and Conclusion The existence theorem of generalized solutions for a the of nonlinear partial differential equations with nonhormogeneous boundary condition is proved under reasonable conditions展开更多
This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practi...This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact con...Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.展开更多
In this work,we re-investigate a classical mathematical model of untreated HIV infection suggested by Kirschner and introduce a novel non-standard finite-difference method for its numerical solution.As our first contr...In this work,we re-investigate a classical mathematical model of untreated HIV infection suggested by Kirschner and introduce a novel non-standard finite-difference method for its numerical solution.As our first contribution,we establish non-negativity,boundedness of some solution components,existence globally in time,and uniqueness on a time interval[0,T]for an arbitrary T>0 for the time-continuous problem which extends known results of Kirschner’s model in the literature.As our second analytical result,we establish different equilibrium states and examine their stability properties in the time-continuous setting or discuss some numerical tools to evaluate this question.Our third contribution is the formulation of a non-standard finite-difference method which preserves non-negativity,boundedness of some time-discrete solution components,equilibria,and their stabilities.As our final theoretical result,we prove linear convergence of our non-standard finite-difference-formulation towards the time-continuous solution.Conclusively,we present numerical examples to illustrate our theoretical findings.展开更多
My creative focus and interest has always been the state of human existence.Compared with grand narratives,it is often the most inadvertent,subtle actions that become my entry point.I starl a dialogue with myself by c...My creative focus and interest has always been the state of human existence.Compared with grand narratives,it is often the most inadvertent,subtle actions that become my entry point.I starl a dialogue with myself by carefully observing and deeply analyzing those subtle yet tense behaviors.Through this process,I discover and develop my own creative system to affirm the value of my existence in my work.展开更多
文摘We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and temperature variations,we verify that the full compressible Navier-Stokes-Korteweg equations admit a unique strong solution as long as the solution of the limiting system exists,when the Mach number is sufficiently small.Furthermore,we deduce the uniform convergence of strong solutions for the compressible system toward those for the corresponding incompressible system on the time interval in which the solution exists.
基金Supported by the Innovation Platform Open Fund in Hunan Province Colleges and Universities of China(201485).
文摘In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
文摘We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.
文摘托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantum esse,being as beinginjeneral)。他在论证是自身时强调实在意义上的是重于逻辑意义的是。是(being)包括本质(essence)与存在(existence);本质(essence)与存在(existence)皆为是者(beings)。而存在(existence)先于本质(essence);存在(existence)是是(being)之最具体的、个别的、实体的、独一无二的完美实现(act)。托马斯.阿奎那的存在论哲学颠覆了传统哲学中存在与本质的位置,它以一种存在主义代替本质主义,从而在形而上学历史上掀起一场革命。
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
文摘Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the first initial-boundary value problem or the nonstationary floW of non-Newtonian viscous incompressiblee fluid through the slit dice. MethodsThe monotone operator theory and the Schauder's fixal point theorem were used. Results and Conclusion The existence theorem of generalized solutions for a the of nonlinear partial differential equations with nonhormogeneous boundary condition is proved under reasonable conditions
文摘This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
基金The National Natural Science Foundation of China(No.10672039)the Key Project of Ministry of Education of China(No.105083)
文摘Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.
文摘In this work,we re-investigate a classical mathematical model of untreated HIV infection suggested by Kirschner and introduce a novel non-standard finite-difference method for its numerical solution.As our first contribution,we establish non-negativity,boundedness of some solution components,existence globally in time,and uniqueness on a time interval[0,T]for an arbitrary T>0 for the time-continuous problem which extends known results of Kirschner’s model in the literature.As our second analytical result,we establish different equilibrium states and examine their stability properties in the time-continuous setting or discuss some numerical tools to evaluate this question.Our third contribution is the formulation of a non-standard finite-difference method which preserves non-negativity,boundedness of some time-discrete solution components,equilibria,and their stabilities.As our final theoretical result,we prove linear convergence of our non-standard finite-difference-formulation towards the time-continuous solution.Conclusively,we present numerical examples to illustrate our theoretical findings.
文摘My creative focus and interest has always been the state of human existence.Compared with grand narratives,it is often the most inadvertent,subtle actions that become my entry point.I starl a dialogue with myself by carefully observing and deeply analyzing those subtle yet tense behaviors.Through this process,I discover and develop my own creative system to affirm the value of my existence in my work.