1.Background Crop diseases diminish potential yields by over 20%annually worldwide[1],driving a century-long quest to understand and harness genetic resistance in plants.The genetic basis of disease resistance was fir...1.Background Crop diseases diminish potential yields by over 20%annually worldwide[1],driving a century-long quest to understand and harness genetic resistance in plants.The genetic basis of disease resistance was first recognized in the early 1900s,when Biffen(1905)demonstrated that resistance to stripe rust in wheat(Triticum aestivum)followed Mendelian rules of inheritance[2].This foundational insight was later expanded by Flor(1942),who formulated the“gene-for-gene”model describing the genetic interplay between host resistance(R)genes and pathogen avirulence(Avr)genes[3].展开更多
开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务...开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务过来的请求超时,A加入了超时重试机制,间隔时间根据重试次数的多少来决定,次数越多,两次重试之间间隔的时间越多,此时的业务高峰也会给A带来大量请求,大量的超时会导致重试队列迅速堆积,直到内存溢出。该文从线程池工作机制、Scheduled Thread Pool Executor实例的创建,获取重试任务的过程以及提交任务的过程角度分析,并通过源代码的剖析和测试工具My Eclipse进行演示测试内存泄露的情况,得出避免内存泄露的解决方案。展开更多
Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to ...Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)(which is also known as executor service)has been used extensively as a middleware service in software-intensive systems.TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime.In case of distributed-TPS(DTPS),another issue is the load balancing b/w available set of TPSs running at backend servers.Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload.Consequently,the performance of software-intensive system is suffered.Thus,in this paper,we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword.On the one hand,it effectively performs the load balancing(in case of overload situation)among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs.And on the other hand,its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size,because the pool size in each TPS is kept equal to the request rate on it,hence dynamically optimizes TPS.We evaluated the results of the proposed system against state of the art DTPSs by a clientserver based simulator and found that our system outperformed by sustaining smaller response times.展开更多
The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no consider...The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.展开更多
Bacterial blight(BB)is a globally devastating rice disease caused by Xanthomonas oryzae pv.oryzae(Xoo).The use of disease resistance(R)genes in rice breeding is an effective and economical strategy for the control of ...Bacterial blight(BB)is a globally devastating rice disease caused by Xanthomonas oryzae pv.oryzae(Xoo).The use of disease resistance(R)genes in rice breeding is an effective and economical strategy for the control of this disease.Nevertheless,a majority of R genes lack durable resistance for long-term use under global warming conditions.Here,we report the isolation of a novel executor R gene,Xa7,that confers extremely durable,broad-spectrum,and heat-tolerant resistance to Xoo.The expression of Xa7 was induced by incompatible Xoo strains that secreted the transcription activator-like effector(TALE)AvrXa7 or PthXo3,which recognized effector binding elements(EBEs)in the Xa7 promoter.Furthermore,Xa7 induction was faster and stronger under high temperatures.Overexpression of Xa7 or co-transformation of Xa7 with avrXa7 triggered a hypersensitive response in plants.Constitutive expression of Xa7 activated a defense response in the absence of Xoo but inhibited the growth of transgenic rice plants.In addition,analysis of over 3000 rice varieties showed that the Xa7 locuswas found primarily in the indica and aus subgroups.A variation consisting of an 11-bp insertion and a base substitution(G to T)was found in EBEAvrXa7 in the tested varieties,resulting in a loss of Xa7 BB resistance.Through a decade of effort,we have identified an important BB resistance gene and characterized its distinctive interaction with Xoo strains;these findings will greatly facilitate research on the molecular mechanism of Xa7-mediated resistance and promote the use of this valuable gene in breeding.展开更多
Co-residency of different tenants’ virtual machines(VMs) in cloud provides a good chance for side-channel attacks, which results in information leakage. However, most of current defense suffers from the generality or...Co-residency of different tenants’ virtual machines(VMs) in cloud provides a good chance for side-channel attacks, which results in information leakage. However, most of current defense suffers from the generality or compatibility problem, thus failing in immediate real-world deployment. VM migration, an inherit mechanism of cloud systems, envisions a promising countermeasure, which limits co-residency by moving VMs between servers. Therefore, we first set up a unified practical adversary model, where the attacker focuses on effective side channels. Then we propose Driftor, a new cloud system that contains VMs of a multi-executor structure where only one executor is active to provide service through a proxy, thus reducing possible information leakage. Active state is periodically switched between executors to simulate defensive effect of VM migration. To enhance the defense, real VM migration is enabled at the same time. Instead of solving the migration satisfiability problem with intractable CIRCUIT-SAT, a greedy-like heuristic algorithm is proposed to search for a viable solution by gradually expanding an initial has-to-migrate set of VMs. Experimental results show that Driftor can not only defend against practical fast side-channel attack, but also bring about reasonable impacts on real-world cloud applications.展开更多
基金supported by the National Natural Science Foundation of China (U21A20224)the Key Research and Development Program of Ministry of Science and Technology of China(2023YFD1200402) to Zhiyong Liuby funding from King Abdullah University of Science and Technology to Brande B.H.Wulff
文摘1.Background Crop diseases diminish potential yields by over 20%annually worldwide[1],driving a century-long quest to understand and harness genetic resistance in plants.The genetic basis of disease resistance was first recognized in the early 1900s,when Biffen(1905)demonstrated that resistance to stripe rust in wheat(Triticum aestivum)followed Mendelian rules of inheritance[2].This foundational insight was later expanded by Flor(1942),who formulated the“gene-for-gene”model describing the genetic interplay between host resistance(R)genes and pathogen avirulence(Avr)genes[3].
文摘开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务过来的请求超时,A加入了超时重试机制,间隔时间根据重试次数的多少来决定,次数越多,两次重试之间间隔的时间越多,此时的业务高峰也会给A带来大量请求,大量的超时会导致重试队列迅速堆积,直到内存溢出。该文从线程池工作机制、Scheduled Thread Pool Executor实例的创建,获取重试任务的过程以及提交任务的过程角度分析,并通过源代码的剖析和测试工具My Eclipse进行演示测试内存泄露的情况,得出避免内存泄露的解决方案。
文摘Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)(which is also known as executor service)has been used extensively as a middleware service in software-intensive systems.TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime.In case of distributed-TPS(DTPS),another issue is the load balancing b/w available set of TPSs running at backend servers.Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload.Consequently,the performance of software-intensive system is suffered.Thus,in this paper,we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword.On the one hand,it effectively performs the load balancing(in case of overload situation)among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs.And on the other hand,its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size,because the pool size in each TPS is kept equal to the request rate on it,hence dynamically optimizes TPS.We evaluated the results of the proposed system against state of the art DTPSs by a clientserver based simulator and found that our system outperformed by sustaining smaller response times.
文摘The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.
基金supported by the Ministry of Agriculture and Rural Affairs of China(2016ZX08009003-001)the National Natural Science Foundation of China(32071987,31871605)the Natural Science Foundation of Zhejiang Province(LD19C130001).
文摘Bacterial blight(BB)is a globally devastating rice disease caused by Xanthomonas oryzae pv.oryzae(Xoo).The use of disease resistance(R)genes in rice breeding is an effective and economical strategy for the control of this disease.Nevertheless,a majority of R genes lack durable resistance for long-term use under global warming conditions.Here,we report the isolation of a novel executor R gene,Xa7,that confers extremely durable,broad-spectrum,and heat-tolerant resistance to Xoo.The expression of Xa7 was induced by incompatible Xoo strains that secreted the transcription activator-like effector(TALE)AvrXa7 or PthXo3,which recognized effector binding elements(EBEs)in the Xa7 promoter.Furthermore,Xa7 induction was faster and stronger under high temperatures.Overexpression of Xa7 or co-transformation of Xa7 with avrXa7 triggered a hypersensitive response in plants.Constitutive expression of Xa7 activated a defense response in the absence of Xoo but inhibited the growth of transgenic rice plants.In addition,analysis of over 3000 rice varieties showed that the Xa7 locuswas found primarily in the indica and aus subgroups.A variation consisting of an 11-bp insertion and a base substitution(G to T)was found in EBEAvrXa7 in the tested varieties,resulting in a loss of Xa7 BB resistance.Through a decade of effort,we have identified an important BB resistance gene and characterized its distinctive interaction with Xoo strains;these findings will greatly facilitate research on the molecular mechanism of Xa7-mediated resistance and promote the use of this valuable gene in breeding.
基金the National Natural Science Foundation of China (Nos. 61521003 and 61602509)the National Key Research and Development Program of China (Nos. 2016YFB0800100 and 2016YFB0800101)the Key Technologies Research and Development Program of Henan Province of China (No. 172102210615).
文摘Co-residency of different tenants’ virtual machines(VMs) in cloud provides a good chance for side-channel attacks, which results in information leakage. However, most of current defense suffers from the generality or compatibility problem, thus failing in immediate real-world deployment. VM migration, an inherit mechanism of cloud systems, envisions a promising countermeasure, which limits co-residency by moving VMs between servers. Therefore, we first set up a unified practical adversary model, where the attacker focuses on effective side channels. Then we propose Driftor, a new cloud system that contains VMs of a multi-executor structure where only one executor is active to provide service through a proxy, thus reducing possible information leakage. Active state is periodically switched between executors to simulate defensive effect of VM migration. To enhance the defense, real VM migration is enabled at the same time. Instead of solving the migration satisfiability problem with intractable CIRCUIT-SAT, a greedy-like heuristic algorithm is proposed to search for a viable solution by gradually expanding an initial has-to-migrate set of VMs. Experimental results show that Driftor can not only defend against practical fast side-channel attack, but also bring about reasonable impacts on real-world cloud applications.