To investigate the vibration response of the comprehensive transportation hub structure under multiple-source excitations,an on-site vibration measurement was carried out at Wuhan Railway Station in China.The characte...To investigate the vibration response of the comprehensive transportation hub structure under multiple-source excitations,an on-site vibration measurement was carried out at Wuhan Railway Station in China.The characteristics of each floor vibration were obtained through the time domain and frequency domain analyses.Based on the vibration characteristic under multiple-source excitations,the proposed attenuation model was derived.In addition,a vibration comfort evaluation on the Wuhan Railway Station was conducted.The results show that the effect of the number of vibration sources on horizontal acceleration is more significant than that regarding vertical acceleration.When the structure is under the effects two vibration sources with different frequencies,a high-frequency vibration can amplify a low-frequency vibration.The derived attenuation model can precisely predict the vibration attenuation and reduce the subsequent vibration test workload.Based on the annoyance rate model result,the annoyance rate of Wuhan Railway Station is high,which is harmful to the staff of the station.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a ...Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a simply-supported pipe conveying fluid under combined harmonic and Gaussian white noise excitations.According to the generalized Hamilton’s principle,the dynamic model of the pipe conveying fluid under combined harmonic and Gaussian white noise excitations is established.Subsequently,the averaged stochastic differential equations and Fokker–Planck–Kolmogorov(FPK)equations of the pipe conveying fluid subjected to combined excitations are acquired by the modified stochastic averaging method.The effectiveness of the analysis results is verified through the Monte Carlo method.The effects of fluid speed,noise intensity,amplitude of harmonic excitation,and damping factor on the probability density functions of amplitude,displacement,as well as velocity are discussed in detail.The results show that with an increase in fluid speed or noise intensity,the possible greatest amplitude for the fluid-conveying pipe increases,and the possible greatest displacement and velocity also increase.With an increase in the amplitude of harmonic excitation or damping factor,the possible greatest amplitude for the pipe decreases,and the possible greatest displacement and velocity also decrease.展开更多
This study focuses on the fluorescent thermometric properties of CaMoO4:5%Tb3+under different temperature excitations.At the detection wavelength of 544 nm,with the temperature varying from 293 K to 563 K,there is a b...This study focuses on the fluorescent thermometric properties of CaMoO4:5%Tb3+under different temperature excitations.At the detection wavelength of 544 nm,with the temperature varying from 293 K to 563 K,there is a broadband absorption peak in the range of 250 nm to 350 nm.The results indicate that this phenomenon is caused by the superposition of the 4f-5d transition of Tb3+ and the O2--Mo6+charge transfer.It is considered that as the temperature rises,the luminescent intensity of the material shows an obvious continuous decreasing trend,which reflects a significant luminescent thermal quenching trend;thus,this quenching belongs to the“strong coupling”type.Based on the excitation spectrum results,two excitation wavelengths,312 nm and 338 nm,were specifically selected to excite the samples,which correspond to the top of the charge transfer band,the redshift intersection of the charge transfer band,and the edge of the charge transfer band at 293 K,respectively.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
By applying the mastersymmetry of degree one to the time-independent symmetry K_(1), the fifth-order asymmetric Nizhnik-Novikov-Veselov system is derived. The variable separation solution is obtained by using the trun...By applying the mastersymmetry of degree one to the time-independent symmetry K_(1), the fifth-order asymmetric Nizhnik-Novikov-Veselov system is derived. The variable separation solution is obtained by using the truncated Painlevé expansion with a special seed solution. New patterns of localized excitations, such as dromioff, instanton moving on a curved line, and tempo-spatial breather, are constructed. Additionally, fission or fusion solitary wave solutions are presented,graphically illustrated by several interesting examples.展开更多
Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resona...Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.展开更多
基金Science Fund for Distinguished Young Scholars of Hubei Province under Grant No.2023AFA103National Natural Science Foundation of China under Grant No.52078395+1 种基金Open Projects Foundation of State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GFYoung Top-Notch Talent Cultivation Program of Hubei Province。
文摘To investigate the vibration response of the comprehensive transportation hub structure under multiple-source excitations,an on-site vibration measurement was carried out at Wuhan Railway Station in China.The characteristics of each floor vibration were obtained through the time domain and frequency domain analyses.Based on the vibration characteristic under multiple-source excitations,the proposed attenuation model was derived.In addition,a vibration comfort evaluation on the Wuhan Railway Station was conducted.The results show that the effect of the number of vibration sources on horizontal acceleration is more significant than that regarding vertical acceleration.When the structure is under the effects two vibration sources with different frequencies,a high-frequency vibration can amplify a low-frequency vibration.The derived attenuation model can precisely predict the vibration attenuation and reduce the subsequent vibration test workload.Based on the annoyance rate model result,the annoyance rate of Wuhan Railway Station is high,which is harmful to the staff of the station.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
基金supported by the National Natural Science Foundation of China(Nos.12272211 and 12072181).
文摘Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a simply-supported pipe conveying fluid under combined harmonic and Gaussian white noise excitations.According to the generalized Hamilton’s principle,the dynamic model of the pipe conveying fluid under combined harmonic and Gaussian white noise excitations is established.Subsequently,the averaged stochastic differential equations and Fokker–Planck–Kolmogorov(FPK)equations of the pipe conveying fluid subjected to combined excitations are acquired by the modified stochastic averaging method.The effectiveness of the analysis results is verified through the Monte Carlo method.The effects of fluid speed,noise intensity,amplitude of harmonic excitation,and damping factor on the probability density functions of amplitude,displacement,as well as velocity are discussed in detail.The results show that with an increase in fluid speed or noise intensity,the possible greatest amplitude for the fluid-conveying pipe increases,and the possible greatest displacement and velocity also increase.With an increase in the amplitude of harmonic excitation or damping factor,the possible greatest amplitude for the pipe decreases,and the possible greatest displacement and velocity also decrease.
基金Basic Scientific Research Operating Expenses Project of Provincial Undergraduate Colleges and Universities in Heilongjiang Province:Study on Luminescent Properties and Fluorescent Temperature Characteristics of Rare Earth Luminescent Materials Based on Tungstates(YWK10236210223)Provincial General Project:College Students’Innovation and Entrepreneurship Training Program Project:Design of a Multifunctional Intelligent Car(202310236033)。
文摘This study focuses on the fluorescent thermometric properties of CaMoO4:5%Tb3+under different temperature excitations.At the detection wavelength of 544 nm,with the temperature varying from 293 K to 563 K,there is a broadband absorption peak in the range of 250 nm to 350 nm.The results indicate that this phenomenon is caused by the superposition of the 4f-5d transition of Tb3+ and the O2--Mo6+charge transfer.It is considered that as the temperature rises,the luminescent intensity of the material shows an obvious continuous decreasing trend,which reflects a significant luminescent thermal quenching trend;thus,this quenching belongs to the“strong coupling”type.Based on the excitation spectrum results,two excitation wavelengths,312 nm and 338 nm,were specifically selected to excite the samples,which correspond to the top of the charge transfer band,the redshift intersection of the charge transfer band,and the edge of the charge transfer band at 293 K,respectively.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
文摘By applying the mastersymmetry of degree one to the time-independent symmetry K_(1), the fifth-order asymmetric Nizhnik-Novikov-Veselov system is derived. The variable separation solution is obtained by using the truncated Painlevé expansion with a special seed solution. New patterns of localized excitations, such as dromioff, instanton moving on a curved line, and tempo-spatial breather, are constructed. Additionally, fission or fusion solitary wave solutions are presented,graphically illustrated by several interesting examples.
基金Beijing Normal University was supported by the Fundamental Research Funds for the Central Universitiesthe National Key Projects for Research and Development of China(No.2021YFA1400400)+1 种基金the National Natural Science Foundation of China(Grant Nos.12174029 and 11922402)the neutron beamtimes from J-PARC(Proposal No.2019A0002)。
文摘Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.