By adopting sodium silicate as a major material,SiO_2 nanoparticles (size in 8-15nm) water-dispersiod was prepared by ion exchanging.The effects of sodium silicate concentration,surface-modifying time,temperature and ...By adopting sodium silicate as a major material,SiO_2 nanoparticles (size in 8-15nm) water-dispersiod was prepared by ion exchanging.The effects of sodium silicate concentration,surface-modifying time,temperature and technological conditions on their diameter,size distribution and dispersion stability were also studied.The result show that,the hydrophilic lipophlic and hydrophilic-lipophilic SiO_(2) nanoparticles water-dispersoid can be prepared through different kinds of surface-modifiers and the optimum reaction conditions have been determined as follows:sodium silicate solution concentration:8w%;silicone dosage:3% of the total mass of nano SiO_(2) water-dispersoid;adding way and time of surface-modifier:continual dropping for 2h;surface-modifying temperature:60-70℃.展开更多
In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN...In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN+(CH3)3 directly from their molecular structure. The comparison of the calculated and the observed results showed that this method is practical.展开更多
Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate an...Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.展开更多
Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a li...Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.展开更多
At present, electricity price to grid of domestic power plants is priced by the national administration based on the policy of "one power plant with one electricity price to grid," which is difficult to real...At present, electricity price to grid of domestic power plants is priced by the national administration based on the policy of "one power plant with one electricity price to grid," which is difficult to realize real bidding for access to grid in practice in a short term. This paper presents one kind of power-exchanging transaction model among price-varied power plants, which will be beneficial to price-varied power plants without any loss of profits of them and guarantee state-owned assets profits in minimum loss with no promotion of average price limit by power plants. Under ideal conditions, the computation results showed the sufficiency and necessity of power-exchanging transaction and maximum similarity with the requirements of optimized resources disposition in economics. The presented model is shown to be full of practicability and has been used in some part of power market.展开更多
Benggang is a typical fragmented erosional landscape in southern and southeastern China,posing sig-nificant risk to the local residents and economic development.Therefore,an efficient and accurate fine-grained segment...Benggang is a typical fragmented erosional landscape in southern and southeastern China,posing sig-nificant risk to the local residents and economic development.Therefore,an efficient and accurate fine-grained segmentation method is crucial for monitoring the Benggang areas.In this paper,we propose a deep learning-based automatic segmentation method for Benggang by integrating high-resolution Digital Orthophoto Map(DOM)and Digital Surface Model(DSM)data.The DSM data is used to extract slope maps,aiming to capture primary morphological features.The proposed method consists of a dual-stream convolutional encoder-decoder network in which multiple cascaded convolutional layers and a skip connection scheme are used to extract morphological and visual features of the Benggang areas.The rich discriminative information in the DOM and slope data is fused by a channel exchanging mechanism that dynamically exchanges the most discriminative features from either the DOM or DSM stream ac-cording to their importance at the channel level.Evaluation experiments were conducted on a chal-lenging dataset collected from Guangdong Province,China,and the results show that the proposed channel exchanging network based deep fusion method achieves 84.62%IoU in Benggang segmentation,outperforming several existing unimodal or multimodal baselines.The proposed multimodal segmen-tation method greatly improves the efficiency of large-scale discovery of Benggang,and thus is important for the management and restoration of Benggang in southern and southeastern China,as well as the monitoring of other similar erosional landscapes.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studie...By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.展开更多
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr...Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectr...Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film ha...High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film has a tetragonal distortion with a c/a ratio of~0.98.The film exhibits exceptional stability in both aqueous and ambient conditions,which is a crucial factor for practical applications.Electrical transport reveals its metallic behavior with an upturn at low temperatures,which could be attributed to the Kondo effect originated from nitrogen vacancy-induced magnetic impurities.Room temperature exchange bias has been demonstrated in a MnN/CoFeB heterostructure,verifying the AFM ordering of MnN.Considering its high Néel temperature~650 K,superior stability,and low-cost,this work highlights the epitaxial MnN films as a promising candidate for AFM spintronic applications.展开更多
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel...In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.展开更多
文摘By adopting sodium silicate as a major material,SiO_2 nanoparticles (size in 8-15nm) water-dispersiod was prepared by ion exchanging.The effects of sodium silicate concentration,surface-modifying time,temperature and technological conditions on their diameter,size distribution and dispersion stability were also studied.The result show that,the hydrophilic lipophlic and hydrophilic-lipophilic SiO_(2) nanoparticles water-dispersoid can be prepared through different kinds of surface-modifiers and the optimum reaction conditions have been determined as follows:sodium silicate solution concentration:8w%;silicone dosage:3% of the total mass of nano SiO_(2) water-dispersoid;adding way and time of surface-modifier:continual dropping for 2h;surface-modifying temperature:60-70℃.
基金the State Natural Science Foundation of China(No.30070178)the Governor Foundation of Guizhou Province for their financial supports.
文摘In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN+(CH3)3 directly from their molecular structure. The comparison of the calculated and the observed results showed that this method is practical.
文摘Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.
基金Supported by National Natural Science Foundation of China(No.50902103)
文摘Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.
基金This research is supported by Special Science Fund on University Doctor Science Point of the Department of Education of China (20020698027).
文摘At present, electricity price to grid of domestic power plants is priced by the national administration based on the policy of "one power plant with one electricity price to grid," which is difficult to realize real bidding for access to grid in practice in a short term. This paper presents one kind of power-exchanging transaction model among price-varied power plants, which will be beneficial to price-varied power plants without any loss of profits of them and guarantee state-owned assets profits in minimum loss with no promotion of average price limit by power plants. Under ideal conditions, the computation results showed the sufficiency and necessity of power-exchanging transaction and maximum similarity with the requirements of optimized resources disposition in economics. The presented model is shown to be full of practicability and has been used in some part of power market.
基金funded by Key Research and Development Program of Hubei Province,China under grant 2021BAA186the National Natural Science Foundation of China under grant number 41601298.
文摘Benggang is a typical fragmented erosional landscape in southern and southeastern China,posing sig-nificant risk to the local residents and economic development.Therefore,an efficient and accurate fine-grained segmentation method is crucial for monitoring the Benggang areas.In this paper,we propose a deep learning-based automatic segmentation method for Benggang by integrating high-resolution Digital Orthophoto Map(DOM)and Digital Surface Model(DSM)data.The DSM data is used to extract slope maps,aiming to capture primary morphological features.The proposed method consists of a dual-stream convolutional encoder-decoder network in which multiple cascaded convolutional layers and a skip connection scheme are used to extract morphological and visual features of the Benggang areas.The rich discriminative information in the DOM and slope data is fused by a channel exchanging mechanism that dynamically exchanges the most discriminative features from either the DOM or DSM stream ac-cording to their importance at the channel level.Evaluation experiments were conducted on a chal-lenging dataset collected from Guangdong Province,China,and the results show that the proposed channel exchanging network based deep fusion method achieves 84.62%IoU in Benggang segmentation,outperforming several existing unimodal or multimodal baselines.The proposed multimodal segmen-tation method greatly improves the efficiency of large-scale discovery of Benggang,and thus is important for the management and restoration of Benggang in southern and southeastern China,as well as the monitoring of other similar erosional landscapes.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20676051 and 20573034)the Important Construction Project (Category A) of Shanghai Jiao Tong University (Grant No. AE 150085)
文摘By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173091,62101391。
文摘Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金supported by the National Natural Science Foundation of China(No.12374257)。
文摘Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
文摘High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film has a tetragonal distortion with a c/a ratio of~0.98.The film exhibits exceptional stability in both aqueous and ambient conditions,which is a crucial factor for practical applications.Electrical transport reveals its metallic behavior with an upturn at low temperatures,which could be attributed to the Kondo effect originated from nitrogen vacancy-induced magnetic impurities.Room temperature exchange bias has been demonstrated in a MnN/CoFeB heterostructure,verifying the AFM ordering of MnN.Considering its high Néel temperature~650 K,superior stability,and low-cost,this work highlights the epitaxial MnN films as a promising candidate for AFM spintronic applications.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.