期刊文献+
共找到5,437篇文章
< 1 2 250 >
每页显示 20 50 100
未知人Na(+)-K(+)-Exchanging ATPase α1亚基基因第一内含子的获得及鉴定
1
作者 杨靖轩 张金三 卢圣栋 《中国医学科学院学报》 CAS CSCD 北大核心 1999年第3期159-165,共7页
目的研究人Na(+)-K(+)-ExchangingATPaseα1亚单位基因胞外区约80~130位氨基酸编码序列的未知基因组结构。方法采用聚合酶链反应(PCR)方法对人基因组DNA及cDNA文库进行扩增,限制性酶切... 目的研究人Na(+)-K(+)-ExchangingATPaseα1亚单位基因胞外区约80~130位氨基酸编码序列的未知基因组结构。方法采用聚合酶链反应(PCR)方法对人基因组DNA及cDNA文库进行扩增,限制性酶切分析扩增产物,并进行荧光测序,对测序结果进行同源性分析及剪接位点的搜索并对得到的核苷酸序列进行分析。结果人基因组DNA和cDNA经扩增后分别得到833和195bp两种不同大小的片段Fg,Fc。分析序列发现Fg与Fc相比在138~775bp处含有一638bp的插入片段,此片段与GenBank中的任何已知序列均无明显同源性。结论本研究发现了一段全新未知的人Na(+)-K(+)-ExchangingATPaseα1亚单位基因的内含子全序列,并得到了第一外显子同第二外显子之间的相对位置和序列,其在Gen-Bank的基因检索号为L76938。序列分析表明该内含子可能具有潜在的调控基因表达的功能,并含有一个可能的编码序列。 展开更多
关键词 exchanging ATPASE α1亚单位 PCR 内含子
在线阅读 下载PDF
Preparation of SiO_2 Nanoparticles by Ion Exchanging and Study on Their Dispersion Stability
2
作者 黄可知 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期7-10,共4页
By adopting sodium silicate as a major material,SiO_2 nanoparticles (size in 8-15nm) water-dispersiod was prepared by ion exchanging.The effects of sodium silicate concentration,surface-modifying time,temperature and ... By adopting sodium silicate as a major material,SiO_2 nanoparticles (size in 8-15nm) water-dispersiod was prepared by ion exchanging.The effects of sodium silicate concentration,surface-modifying time,temperature and technological conditions on their diameter,size distribution and dispersion stability were also studied.The result show that,the hydrophilic lipophlic and hydrophilic-lipophilic SiO_(2) nanoparticles water-dispersoid can be prepared through different kinds of surface-modifiers and the optimum reaction conditions have been determined as follows:sodium silicate solution concentration:8w%;silicone dosage:3% of the total mass of nano SiO_(2) water-dispersoid;adding way and time of surface-modifier:continual dropping for 2h;surface-modifying temperature:60-70℃. 展开更多
关键词 NANOPARTICLES ion exchanging surface-modified size distribution dispersion stability
在线阅读 下载PDF
Molecular Exchanging Energy of Anionic/Cationic Surfactants System on the Surface of Solution
3
作者 DongYangHUANG XiZhangYI ZhengWuWANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第10期1077-1080,共4页
In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN... In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN+(CH3)3 directly from their molecular structure. The comparison of the calculated and the observed results showed that this method is practical. 展开更多
关键词 SURFACTANT molecule exchanging energy dimensional crystal model.
在线阅读 下载PDF
Study on Relationship Between Arc Behavior and Joint Forming in Cold Metal Transfer Welding Technology with Polarity⁃Exchanging
4
作者 Lijun Han Pengyu Lin +2 位作者 Gengwei Zhang Lihui Zhong Changhua Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第5期81-86,共6页
Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate an... Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding. 展开更多
关键词 MIG cold metal transfer polarity⁃exchanging arc behavior joint shape coefficient
在线阅读 下载PDF
Heat Exchanging Process of Metal Target under Millisecond Pulsed Laser Shocking
5
作者 王洪礼 赵志培 +1 位作者 孙景 杨静 《Transactions of Tianjin University》 EI CAS 2013年第1期66-69,共4页
Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a li... Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff. 展开更多
关键词 laser shocking pulse heat exchanging
在线阅读 下载PDF
Exchanging Experience and Promoting Cooperation——On China-German Seminar of "Women's Status and Roles in the New Era
6
作者 Kong Genhong Guo Yamin 《International Understanding》 2003年第4期27-29,共3页
关键词 in On China-German Seminar of exchanging Experience and Promoting Cooperation
在线阅读 下载PDF
Constructing the Silk Road With Sweat,Exchanging Friendship Cordially──Notes on the Visit of Mr. Turkmen, Columnist and Former Foreign Minister of Turkey
7
《International Understanding》 2000年第1期7-9,共3页
关键词 Columnist and Former Foreign Minister of Turkey Constructing the Silk Road With Sweat exchanging Friendship Cordially Notes on the Visit of Mr
在线阅读 下载PDF
Primary Study of Power-Exchanging Trans- action Model Among Price-Varied Power Plants in Practical Conditions
8
作者 Chen Tianxiang Zhang Baohui 《Electricity》 2005年第3期12-16,共5页
At present, electricity price to grid of domestic power plants is priced by the national administration based on the policy of "one power plant with one electricity price to grid," which is difficult to real... At present, electricity price to grid of domestic power plants is priced by the national administration based on the policy of "one power plant with one electricity price to grid," which is difficult to realize real bidding for access to grid in practice in a short term. This paper presents one kind of power-exchanging transaction model among price-varied power plants, which will be beneficial to price-varied power plants without any loss of profits of them and guarantee state-owned assets profits in minimum loss with no promotion of average price limit by power plants. Under ideal conditions, the computation results showed the sufficiency and necessity of power-exchanging transaction and maximum similarity with the requirements of optimized resources disposition in economics. The presented model is shown to be full of practicability and has been used in some part of power market. 展开更多
关键词 different price power plant power exchange transaction model
在线阅读 下载PDF
Benggang segmentation via deep exchanging of digital orthophoto map and digital surface model features
9
作者 Shengyu Shen Jiasheng Chen +2 位作者 Dongbing Cheng Honghu Liu Tong Zhang 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第3期589-599,共11页
Benggang is a typical fragmented erosional landscape in southern and southeastern China,posing sig-nificant risk to the local residents and economic development.Therefore,an efficient and accurate fine-grained segment... Benggang is a typical fragmented erosional landscape in southern and southeastern China,posing sig-nificant risk to the local residents and economic development.Therefore,an efficient and accurate fine-grained segmentation method is crucial for monitoring the Benggang areas.In this paper,we propose a deep learning-based automatic segmentation method for Benggang by integrating high-resolution Digital Orthophoto Map(DOM)and Digital Surface Model(DSM)data.The DSM data is used to extract slope maps,aiming to capture primary morphological features.The proposed method consists of a dual-stream convolutional encoder-decoder network in which multiple cascaded convolutional layers and a skip connection scheme are used to extract morphological and visual features of the Benggang areas.The rich discriminative information in the DOM and slope data is fused by a channel exchanging mechanism that dynamically exchanges the most discriminative features from either the DOM or DSM stream ac-cording to their importance at the channel level.Evaluation experiments were conducted on a chal-lenging dataset collected from Guangdong Province,China,and the results show that the proposed channel exchanging network based deep fusion method achieves 84.62%IoU in Benggang segmentation,outperforming several existing unimodal or multimodal baselines.The proposed multimodal segmen-tation method greatly improves the efficiency of large-scale discovery of Benggang,and thus is important for the management and restoration of Benggang in southern and southeastern China,as well as the monitoring of other similar erosional landscapes. 展开更多
关键词 Benggang segmentation Deep fusion Channel exchanging DOM DSM
原文传递
Direct Photolithography of WO_(x) Nanoparticles for High‑Resolution Non‑Emissive Displays 被引量:2
10
作者 Chang Gu Guojian Yang +7 位作者 Wenxuan Wang Aiyan Shi Wenjuan Fang Lei Qian Xiaofei Hu Ting Zhang Chaoyu Xiang Yu‑Mo Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期297-309,共13页
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta... High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics. 展开更多
关键词 Electrochromic Direct photolithography WOx nanoparticles In situ photo-induced ligand exchange High-resolution displays
在线阅读 下载PDF
Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution 被引量:2
11
作者 WANG ZhengWu1 & YI XiZhang2 1 Department of Food Sciences & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2 Institute of Theoretical Chemistry, Shandong University, Jinan 250100, China 《Science China Chemistry》 SCIE EI CAS 2007年第4期468-475,共8页
By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studie... By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well. 展开更多
关键词 SURFACTANT MOLECULE exchanging ENERGY dimensional crystal model
原文传递
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:1
12
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
Charge carrier management via semiconducting matrix for efficient self-powered quantum dot infrared photodetectors 被引量:1
13
作者 Jianfeng Ding Xinying Liu +3 位作者 Yueyue Gao Chen Dong Gentian Yue Furui Tan 《Journal of Semiconductors》 2025年第3期74-81,共8页
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po... Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices. 展开更多
关键词 quantum dot semiconducting matrix ligand exchange self-powered photodetectors
在线阅读 下载PDF
Precise in-situ modulation of bandgap-controlled single-crystalline perovskite microlasers 被引量:1
14
作者 Bingwang Yang Maosheng Liu +5 位作者 Sihao Xia Peng Wan Daning Shi Caixia Kan Xiaosheng Fang Mingming Jiang 《Journal of Materials Science & Technology》 2025年第11期27-36,共10页
Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectr... Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration. 展开更多
关键词 MICROLASER Tunable lasing mode Annealing-assisted solid-solid anion exchange In-situ approach Wavelength-tunable laser PHOTOSTABILITY
原文传递
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
15
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
16
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
17
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Optimal Investment Strategy for an Insurer in Two Currency Markets
18
作者 ZHOU Qianqian 《应用概率统计》 北大核心 2025年第1期1-16,共16页
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the... In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented. 展开更多
关键词 Cramer-Lundberg model exponential utility Hamilton-Jacobi-Bellman equation optimal investment strategy foreign exchange rate
在线阅读 下载PDF
Highly Stable,Antiferromagnetic MnN Films Grown by Molecular Beam Epitaxy
19
作者 JI Zhuang XIAO Dongdong +2 位作者 GU Minghui MENG Meng GUO Jiandong 《真空科学与技术学报》 北大核心 2025年第8期664-672,共9页
High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film ha... High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film has a tetragonal distortion with a c/a ratio of~0.98.The film exhibits exceptional stability in both aqueous and ambient conditions,which is a crucial factor for practical applications.Electrical transport reveals its metallic behavior with an upturn at low temperatures,which could be attributed to the Kondo effect originated from nitrogen vacancy-induced magnetic impurities.Room temperature exchange bias has been demonstrated in a MnN/CoFeB heterostructure,verifying the AFM ordering of MnN.Considering its high Néel temperature~650 K,superior stability,and low-cost,this work highlights the epitaxial MnN films as a promising candidate for AFM spintronic applications. 展开更多
关键词 Molecular beam epitaxy Antiferromagnetic MnN thin film Stability Kondo effect Exchange bias
原文传递
PEMFCs degradation prediction based on ENSACO-LSTM
20
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部