The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the ...The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the experiment. The results indicate that whether carbonate exists in soil or not, beyond 99% of exogenous Nd is adsorbed by soil. Low-concentration carbonate (0.8 similar to 1.6 g(.)kg(-1)) can reduce exchangeable Nd concentration in soil, while high-concentration carbonate (4.0 g(.)kg(-1)) impacts little on the exchangeable Nd concentration. In addition, carbonate of 0.8 similar to 1.6 g(.)kg(-1) in soil can inhibit wheat seedlings to absorb Nd. However, when the carbonate concentration rises to 4.0 g(.)kg(-1) the inhibition will become indistinct.展开更多
A Tibetan art form bridges the past and present and connects cultures around the world.THANGKA,a unique form of Tibetan sacred painting,is gaining prominence globally due to its vibrant colors,exquisite craftsmanship,...A Tibetan art form bridges the past and present and connects cultures around the world.THANGKA,a unique form of Tibetan sacred painting,is gaining prominence globally due to its vibrant colors,exquisite craftsmanship,and profound religious and cultural significance.With the acceleration of globalization,this symbol of Tibetan culture that combines artistic expression with spirituality has become a bridge for cultural exchange between the East and the West.Recently,China Today spoke to Yixi Puncog,art collector and council member of the China Association for Preservation and Development of Tibetan Culture,to learn more about Thangka art,its role in international exchange,and how it is enhancing China’s cultural soft power.展开更多
In 2021,the relatives of 16 international friends of China jointly sent a letter to Chinese President Xi Jinping,congratulating the Communist Party of China(CPC)on its 100th anniversary.These are the sons and daughter...In 2021,the relatives of 16 international friends of China jointly sent a letter to Chinese President Xi Jinping,congratulating the Communist Party of China(CPC)on its 100th anniversary.These are the sons and daughters and family members of those who helped China in its times of need.Eric Foster,nephew of renowned U.S.journalist Helen Foster-Snow,was one of them.展开更多
John Owen-Jones,a West End performer best known for his record-breaking runs in Les Miserables and The Phantom of the Opera,is touring China with an all-star cast and discussing exchanges between Western and Chinese m...John Owen-Jones,a West End performer best known for his record-breaking runs in Les Miserables and The Phantom of the Opera,is touring China with an all-star cast and discussing exchanges between Western and Chinese musical theater.展开更多
Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecu...Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.展开更多
Coiled tube heat exchangers are widely preferred in shell structures due to their superior heat transfer performance,driven by favorable flow characteristics.This study investigates the effect of modifying coil and sh...Coiled tube heat exchangers are widely preferred in shell structures due to their superior heat transfer performance,driven by favorable flow characteristics.This study investigates the effect of modifying coil and shell configurations on heat transfer efficiency.Two key enhancements were examined:adding fins to the outer coil surface and integrating longitudinal slots within a hollowed shell.These modifications promote turbulence and extend heat transfer duration,thereby improving performance.However,they also introduce challenges,including increased pressure loss andmanufacturing complexity.Numerical simulationswere conducted usingANSYS Fluent 2024R1 under identical boundary conditions.With a fixed cold-side flow rate of 3 L/min,the input temperatures for the hot and cold fluids were 333.15 and 291.65 K,respectively.The hot-side flow rate varied between 2 and 6 L/min.Simulation outcomes were reported for the objectives of the study that included the improvement in heat exchangers’heat transfer enhancement.As it was indicated in the study outcomes,the average heat transfer rate increased by 15.56%,the overall heat transfer coefficient enhanced by about 29.51%,and the convective heat transfer coefficient improved by about 75.96%compared to the conventional shell-and-coil tube heat exchanger model.However,the modified technique resulted in a significant pressure drop.展开更多
ISO releases two standards for textiles.Recently,two international standards,ISO 8159:2025,Textiles-Morphology of fibres and yarns-Vocabulary,and ISO 17971:2025,Textiles-Smart textiles-Test method for determining the ...ISO releases two standards for textiles.Recently,two international standards,ISO 8159:2025,Textiles-Morphology of fibres and yarns-Vocabulary,and ISO 17971:2025,Textiles-Smart textiles-Test method for determining the screen-touch properties of fabrics,were officially released.They are of positive significance for eliminating technical ambiguities in exchanges on textile products and filling the gaps in international standards.展开更多
The Belt and Road Initiative and Xinjiang Editors:Foreign Affairs Office of the People’s Government of Xinjiang Uygur Autonomous Region&China Global Television Network of China Media Group Paperback,187 pages Pub...The Belt and Road Initiative and Xinjiang Editors:Foreign Affairs Office of the People’s Government of Xinjiang Uygur Autonomous Region&China Global Television Network of China Media Group Paperback,187 pages Published by Foreign Languages Press As a key junction along the ancient Silk Road,Xinjiang served as a vital crossroads for cultural exchanges between the Eastern and Western civilizations.Thanks to its unique geographic advantages,the region has been designated as a core area of the Belt and Road Initiative(BRI)and is playing a pivotal role in China’s westward opening-up.展开更多
3D printing,as a versatile additive manufacturing technique,offers high design flexibility,rapid prototyping,minimal material waste,and the capability to fabricate complex,customized geometries.These attributes make i...3D printing,as a versatile additive manufacturing technique,offers high design flexibility,rapid prototyping,minimal material waste,and the capability to fabricate complex,customized geometries.These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically,proton exchange membrane fuel cells,proton exchange membrane electrolyzer cells,anion exchange membrane electrolyzer cells,and alkaline electrolyzers—which demand finely structured components such as catalyst layers,gas diffusion layers,electrodes,porous transport layers,and bipolar plates.This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures.Finally,the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in nextgeneration low-temperature hydrogen energy systems.展开更多
The increased interest in geothermal energy is evident,along with the exploitation of traditional hydrothermal systems,in the growing research and projects developing around the reuse of already-drilled oil,gas,and ex...The increased interest in geothermal energy is evident,along with the exploitation of traditional hydrothermal systems,in the growing research and projects developing around the reuse of already-drilled oil,gas,and exploration wells.The Republic of Croatia has around 4000 wells,however,due to a long period since most of these wells were drilled and completed,there is uncertainty about how many are available for retrofitting as deep-borehole heat exchangers.Nevertheless,as hydrocarbon production decreases,it is expected that the number of wells available for the revitalization and exploitation of geothermal energy will increase.The revitalization of wells via deep-borehole heat exchangers involves installing a coaxial heat exchanger and circulating the working fluid in a closed system,during which heat is transferred from the surrounding rock medium to the circulating fluid.Since drilled wells are not of uniformdepth and are located in areas with different thermal rock properties and geothermal gradients,an analysis was conducted to determine available thermal energy as a function of well depth,geothermal gradient,and circulating fluid flow rate.Additionally,an economic analysis was performed to determine the benefits of retrofitting existing assets,such as drilled wells,compared to drilling new wells to obtain the same amount of thermal energy.展开更多
Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emissi...Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects,thereby posing a significant challenge to their versatile cooling applicability.Herein,we present a bicomponent blow spinning strategy for the production of scalable,ultra-flexible,and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter.The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area,thereby achieving a competitive solar reflectivity of 98.7%on its outer surface.Additionally,the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces:The outer surface demonstrates a high mid-infrared emission,whereas the inner surface shows a broad infrared absorptivity,facilitating radiative heat exchange with underlying self-heated objects.Consequently,this textile demonstrates multi-scenario radiative cooling capabilities,enabling versatile outdoor cooling for unheated objects by 7.8℃ and self-heated objects by 13.6℃,compared to commercial sunshade fabrics.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr...Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.展开更多
Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectr...Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.展开更多
High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept...High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept of entropy-mediated phase stabilization was combined with strongly correlated electron systems to achieve directional property control in single-phase manganites.As Ca and Cr are sequentially doped into(Pr_(0.25)La_(0.25)Nd_(0.25)Sm_(0.25))MnO_(3) at specific contents,the original weak ferromagnetic(FM)state with a spin-canted antiferromagnetic(AFM)background transforms into the charge-ordered AFM state,and then further transitions to the intense FM-AFM competition state.Magnetic state evolution also causes significant changes in electrical properties,highlighting the complex magnetoelectronic phase diagram of this system.Under specific doping conditions,the system exhibits a temperature-induced metamagnetic transition and a significant magnetocaloric effect,demonstrating interesting properties brought about by magnetic phase transitions.The complex magnetoelectric behavior induced by the coexistence and competition of multiple interactions is discussed by combining microstructural characterization with a magnetic theory framework.This study explores a method for effectively manipulating the physical properties of manganites based on the high-entropy concept,which is conducive to the development of new functional materials with kaleidoscopic characteristics.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this p...Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.展开更多
文摘The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the experiment. The results indicate that whether carbonate exists in soil or not, beyond 99% of exogenous Nd is adsorbed by soil. Low-concentration carbonate (0.8 similar to 1.6 g(.)kg(-1)) can reduce exchangeable Nd concentration in soil, while high-concentration carbonate (4.0 g(.)kg(-1)) impacts little on the exchangeable Nd concentration. In addition, carbonate of 0.8 similar to 1.6 g(.)kg(-1) in soil can inhibit wheat seedlings to absorb Nd. However, when the carbonate concentration rises to 4.0 g(.)kg(-1) the inhibition will become indistinct.
文摘A Tibetan art form bridges the past and present and connects cultures around the world.THANGKA,a unique form of Tibetan sacred painting,is gaining prominence globally due to its vibrant colors,exquisite craftsmanship,and profound religious and cultural significance.With the acceleration of globalization,this symbol of Tibetan culture that combines artistic expression with spirituality has become a bridge for cultural exchange between the East and the West.Recently,China Today spoke to Yixi Puncog,art collector and council member of the China Association for Preservation and Development of Tibetan Culture,to learn more about Thangka art,its role in international exchange,and how it is enhancing China’s cultural soft power.
文摘In 2021,the relatives of 16 international friends of China jointly sent a letter to Chinese President Xi Jinping,congratulating the Communist Party of China(CPC)on its 100th anniversary.These are the sons and daughters and family members of those who helped China in its times of need.Eric Foster,nephew of renowned U.S.journalist Helen Foster-Snow,was one of them.
文摘John Owen-Jones,a West End performer best known for his record-breaking runs in Les Miserables and The Phantom of the Opera,is touring China with an all-star cast and discussing exchanges between Western and Chinese musical theater.
基金the financial support from the National Key R&D Program of China(2021YFF0500500)the National Natural Science Foundation of China(62474131,62274132,and 62204189)。
文摘Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.
文摘Coiled tube heat exchangers are widely preferred in shell structures due to their superior heat transfer performance,driven by favorable flow characteristics.This study investigates the effect of modifying coil and shell configurations on heat transfer efficiency.Two key enhancements were examined:adding fins to the outer coil surface and integrating longitudinal slots within a hollowed shell.These modifications promote turbulence and extend heat transfer duration,thereby improving performance.However,they also introduce challenges,including increased pressure loss andmanufacturing complexity.Numerical simulationswere conducted usingANSYS Fluent 2024R1 under identical boundary conditions.With a fixed cold-side flow rate of 3 L/min,the input temperatures for the hot and cold fluids were 333.15 and 291.65 K,respectively.The hot-side flow rate varied between 2 and 6 L/min.Simulation outcomes were reported for the objectives of the study that included the improvement in heat exchangers’heat transfer enhancement.As it was indicated in the study outcomes,the average heat transfer rate increased by 15.56%,the overall heat transfer coefficient enhanced by about 29.51%,and the convective heat transfer coefficient improved by about 75.96%compared to the conventional shell-and-coil tube heat exchanger model.However,the modified technique resulted in a significant pressure drop.
文摘ISO releases two standards for textiles.Recently,two international standards,ISO 8159:2025,Textiles-Morphology of fibres and yarns-Vocabulary,and ISO 17971:2025,Textiles-Smart textiles-Test method for determining the screen-touch properties of fabrics,were officially released.They are of positive significance for eliminating technical ambiguities in exchanges on textile products and filling the gaps in international standards.
文摘The Belt and Road Initiative and Xinjiang Editors:Foreign Affairs Office of the People’s Government of Xinjiang Uygur Autonomous Region&China Global Television Network of China Media Group Paperback,187 pages Published by Foreign Languages Press As a key junction along the ancient Silk Road,Xinjiang served as a vital crossroads for cultural exchanges between the Eastern and Western civilizations.Thanks to its unique geographic advantages,the region has been designated as a core area of the Belt and Road Initiative(BRI)and is playing a pivotal role in China’s westward opening-up.
基金the support from the National Natural Science Foundation of China(Nos.22208376,UA22A20429)the Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)+3 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2024QB175,ZR2023LFG005)Fundamental Research Funds for the Central Universities(No.25CX07002A)National Natural Science Foundation of China(Z202401390008)The Hunan Provincial Natural Science Foundation(2025JJ60301)。
文摘3D printing,as a versatile additive manufacturing technique,offers high design flexibility,rapid prototyping,minimal material waste,and the capability to fabricate complex,customized geometries.These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically,proton exchange membrane fuel cells,proton exchange membrane electrolyzer cells,anion exchange membrane electrolyzer cells,and alkaline electrolyzers—which demand finely structured components such as catalyst layers,gas diffusion layers,electrodes,porous transport layers,and bipolar plates.This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures.Finally,the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in nextgeneration low-temperature hydrogen energy systems.
文摘The increased interest in geothermal energy is evident,along with the exploitation of traditional hydrothermal systems,in the growing research and projects developing around the reuse of already-drilled oil,gas,and exploration wells.The Republic of Croatia has around 4000 wells,however,due to a long period since most of these wells were drilled and completed,there is uncertainty about how many are available for retrofitting as deep-borehole heat exchangers.Nevertheless,as hydrocarbon production decreases,it is expected that the number of wells available for the revitalization and exploitation of geothermal energy will increase.The revitalization of wells via deep-borehole heat exchangers involves installing a coaxial heat exchanger and circulating the working fluid in a closed system,during which heat is transferred from the surrounding rock medium to the circulating fluid.Since drilled wells are not of uniformdepth and are located in areas with different thermal rock properties and geothermal gradients,an analysis was conducted to determine available thermal energy as a function of well depth,geothermal gradient,and circulating fluid flow rate.Additionally,an economic analysis was performed to determine the benefits of retrofitting existing assets,such as drilled wells,compared to drilling new wells to obtain the same amount of thermal energy.
基金financial support from the National Natural Science Foundation of China(Grant No.52273067,52233006)the Fundamental Research Funds for the Central Universities(Grant No.2232023A-03)+3 种基金the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.23SG29)the Natural Science Foundation of Shanghai(Grant No.24ZR1402400)the Shanghai Scientific and Technological Innovation Project(Grant No.24520713000)Innovation Program of Shanghai Municipal Education Commission(Grant No.2021-01-07-00-03-E00108).
文摘Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects,thereby posing a significant challenge to their versatile cooling applicability.Herein,we present a bicomponent blow spinning strategy for the production of scalable,ultra-flexible,and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter.The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area,thereby achieving a competitive solar reflectivity of 98.7%on its outer surface.Additionally,the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces:The outer surface demonstrates a high mid-infrared emission,whereas the inner surface shows a broad infrared absorptivity,facilitating radiative heat exchange with underlying self-heated objects.Consequently,this textile demonstrates multi-scenario radiative cooling capabilities,enabling versatile outdoor cooling for unheated objects by 7.8℃ and self-heated objects by 13.6℃,compared to commercial sunshade fabrics.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173091,62101391。
文摘Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.
基金supported by the National Natural Science Foundation of China(No.12374257)。
文摘Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.
基金supported by the National Natural Science Foundation of China(Nos.12074204,12374258 and 12404326)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2022ZD06 and 2023QN01008)+3 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NMGIRT2203)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(No.NJZZ23024)the Fundamental Research Funds for the Inner Mongolia Normal University(No.2023JBYJ015)the Funds for Reform and Development of Local Universities Supported by the Central Government(Cultivation of First-Class Disciplines in Physics).
文摘High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept of entropy-mediated phase stabilization was combined with strongly correlated electron systems to achieve directional property control in single-phase manganites.As Ca and Cr are sequentially doped into(Pr_(0.25)La_(0.25)Nd_(0.25)Sm_(0.25))MnO_(3) at specific contents,the original weak ferromagnetic(FM)state with a spin-canted antiferromagnetic(AFM)background transforms into the charge-ordered AFM state,and then further transitions to the intense FM-AFM competition state.Magnetic state evolution also causes significant changes in electrical properties,highlighting the complex magnetoelectronic phase diagram of this system.Under specific doping conditions,the system exhibits a temperature-induced metamagnetic transition and a significant magnetocaloric effect,demonstrating interesting properties brought about by magnetic phase transitions.The complex magnetoelectric behavior induced by the coexistence and competition of multiple interactions is discussed by combining microstructural characterization with a magnetic theory framework.This study explores a method for effectively manipulating the physical properties of manganites based on the high-entropy concept,which is conducive to the development of new functional materials with kaleidoscopic characteristics.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金“Grassland Talents”of Inner Mongolia Autonomous Region,Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23030)Technology Breakthrough Engineering Hydrogen Energy Field“Unveiling and Leading”Project(2024KJTW0018)+3 种基金“Steed Plan High Level Talents”of Inner Mongolia University,Carbon neutralization research project(STZX202218)National Natural Science Foundation of China(U22A20107),Inner Mongolia Autonomous Region Natural Science Foundation(2023MS02002)Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC2024KF011)National Key R&D Program of China(2022YFA1205201).
文摘Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.