The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the ...The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the experiment. The results indicate that whether carbonate exists in soil or not, beyond 99% of exogenous Nd is adsorbed by soil. Low-concentration carbonate (0.8 similar to 1.6 g(.)kg(-1)) can reduce exchangeable Nd concentration in soil, while high-concentration carbonate (4.0 g(.)kg(-1)) impacts little on the exchangeable Nd concentration. In addition, carbonate of 0.8 similar to 1.6 g(.)kg(-1) in soil can inhibit wheat seedlings to absorb Nd. However, when the carbonate concentration rises to 4.0 g(.)kg(-1) the inhibition will become indistinct.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr...Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectr...Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film ha...High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film has a tetragonal distortion with a c/a ratio of~0.98.The film exhibits exceptional stability in both aqueous and ambient conditions,which is a crucial factor for practical applications.Electrical transport reveals its metallic behavior with an upturn at low temperatures,which could be attributed to the Kondo effect originated from nitrogen vacancy-induced magnetic impurities.Room temperature exchange bias has been demonstrated in a MnN/CoFeB heterostructure,verifying the AFM ordering of MnN.Considering its high Néel temperature~650 K,superior stability,and low-cost,this work highlights the epitaxial MnN films as a promising candidate for AFM spintronic applications.展开更多
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor...The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.展开更多
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel...In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
An Icelandic journalist shares his insights on the political,economic,and cultural exchanges between China and Iceland,after visiting Beijing and Ningxia Hui Autonomous Region in China.
Fostering understanding between China and Africa through dialogue and exchanges Etienne Bankuwiha,a young sinologist from Burundi and a doctoral student at Nanjing University,received on the afternoon of 13 November t...Fostering understanding between China and Africa through dialogue and exchanges Etienne Bankuwiha,a young sinologist from Burundi and a doctoral student at Nanjing University,received on the afternoon of 13 November the message he had been eagerly awaiting-a reply from Chinese President Xi Jinping.展开更多
The Fourth Dialogue on Exchanges and Mutual Learning Among Civilisations was held in Dunhuang in Northwest China's Gansu Province on Friday,bringing together politicians,heads of international organisations,schola...The Fourth Dialogue on Exchanges and Mutual Learning Among Civilisations was held in Dunhuang in Northwest China's Gansu Province on Friday,bringing together politicians,heads of international organisations,scholars and experts to discuss the significance of exchanges and dialogues between different civilisations in a world facing many conflicts.展开更多
In his speech,Han Zheng said that exchanges and mutual learning among civilisations are important driving forces for the advancement of human civilisation as well as world peace and development.President Xi Jinping po...In his speech,Han Zheng said that exchanges and mutual learning among civilisations are important driving forces for the advancement of human civilisation as well as world peace and development.President Xi Jinping pointed out that civilisations become richer and more colourful with exchanges and mutual learning.As the futures of all countries are closely interconnected,inclusiveness,coexistence,exchanges and mutual learning among different civilisations will contribute to the common progress of humanity and promote global prosperity and development.展开更多
On the afternoon of May 30th,as one of the parallel forums of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,the forum"Building a Community of Civilisations:A New Vision for International C...On the afternoon of May 30th,as one of the parallel forums of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,the forum"Building a Community of Civilisations:A New Vision for International Cooperation among Museums"was held in Dunhuang.Experts and scholars from universities and cultural institutions in seven countries,including the ROK,Thailand,Hungary and Tunisia,gathered to discuss the future of international museum cooperation.展开更多
Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in...Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
文摘The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the experiment. The results indicate that whether carbonate exists in soil or not, beyond 99% of exogenous Nd is adsorbed by soil. Low-concentration carbonate (0.8 similar to 1.6 g(.)kg(-1)) can reduce exchangeable Nd concentration in soil, while high-concentration carbonate (4.0 g(.)kg(-1)) impacts little on the exchangeable Nd concentration. In addition, carbonate of 0.8 similar to 1.6 g(.)kg(-1) in soil can inhibit wheat seedlings to absorb Nd. However, when the carbonate concentration rises to 4.0 g(.)kg(-1) the inhibition will become indistinct.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173091,62101391。
文摘Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金supported by the National Natural Science Foundation of China(No.12374257)。
文摘Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
文摘High-quality antiferromagnetic(AFM)θ-phase manganese nitride(MnN)films were successfully grown on MgO(001)substrates by plasma-assisted molecular beam epitaxy.Structural analysis confirms the high-quality MnN film has a tetragonal distortion with a c/a ratio of~0.98.The film exhibits exceptional stability in both aqueous and ambient conditions,which is a crucial factor for practical applications.Electrical transport reveals its metallic behavior with an upturn at low temperatures,which could be attributed to the Kondo effect originated from nitrogen vacancy-induced magnetic impurities.Room temperature exchange bias has been demonstrated in a MnN/CoFeB heterostructure,verifying the AFM ordering of MnN.Considering its high Néel temperature~650 K,superior stability,and low-cost,this work highlights the epitaxial MnN films as a promising candidate for AFM spintronic applications.
基金the National Key Research and Development Program of China(2022YFB4004100)National Natural Science Foundation of China(22272161,22179126)+1 种基金the Jilin Province Science and Technology Development Program(YDZJ202202CXJD011,20240101019JC)Jilin Province major science and technology project(222648GX0105103875)for financial supports.
文摘The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘An Icelandic journalist shares his insights on the political,economic,and cultural exchanges between China and Iceland,after visiting Beijing and Ningxia Hui Autonomous Region in China.
文摘Fostering understanding between China and Africa through dialogue and exchanges Etienne Bankuwiha,a young sinologist from Burundi and a doctoral student at Nanjing University,received on the afternoon of 13 November the message he had been eagerly awaiting-a reply from Chinese President Xi Jinping.
文摘The Fourth Dialogue on Exchanges and Mutual Learning Among Civilisations was held in Dunhuang in Northwest China's Gansu Province on Friday,bringing together politicians,heads of international organisations,scholars and experts to discuss the significance of exchanges and dialogues between different civilisations in a world facing many conflicts.
文摘In his speech,Han Zheng said that exchanges and mutual learning among civilisations are important driving forces for the advancement of human civilisation as well as world peace and development.President Xi Jinping pointed out that civilisations become richer and more colourful with exchanges and mutual learning.As the futures of all countries are closely interconnected,inclusiveness,coexistence,exchanges and mutual learning among different civilisations will contribute to the common progress of humanity and promote global prosperity and development.
文摘On the afternoon of May 30th,as one of the parallel forums of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,the forum"Building a Community of Civilisations:A New Vision for International Cooperation among Museums"was held in Dunhuang.Experts and scholars from universities and cultural institutions in seven countries,including the ROK,Thailand,Hungary and Tunisia,gathered to discuss the future of international museum cooperation.
基金UKRI financial support under grant number EP/Y026098/1 for Global Hydrogen Production Technologies(HyPT)Center。
文摘Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.