Density functional theory(DFT)has been established as a powerful research tool for heterogeneous catalysis research in obtaining key thermodynamic and/or kinetic parameters like adsorption energies,enthalpies of react...Density functional theory(DFT)has been established as a powerful research tool for heterogeneous catalysis research in obtaining key thermodynamic and/or kinetic parameters like adsorption energies,enthalpies of reaction,activation barriers,and rate constants.Understanding of density functional exchangecorrelation approximations is essential to reveal the mechanism and performance of a catalyst.In the present work,we reported the influence of six exchange-correlation density functionals,including PBE,RPBE,BEEF+vdW,optB86b+vdW,SCAN,and SCAN+rVV10,on the adsorption energies,reaction energies and activation barriers of carbon hydrogenation and carbon-carbon couplings during the formation of methane and ethane over Ru(0001)and Ru(1011)surfaces.We found the calculated reaction energies are strongly dependent on exchange-correlation density functionals due to the difference in coordination number between reactants and products on surfaces.The deviation of the calculated elementary reaction energies can be accumulated to a large value for chemical reaction involving multiple steps and vary considerably with different exchange-correlation density functionals calculations.The different exchange-correlation density functionals are found to influence considerably the selectivity of Ru(0001)surface for methane,ethylene,and ethane formation determined by the adsorption energies of intermediates involved.However,the influence on the barriers of the elementary surface reactions and the structural sensitivity of Ru(0001)and Ru(1011)are modest.Our work highlights the limitation of exchange-correlation density functionals on computational catalysis and the importance of choosing a proper exchange-correlation density functional in correctly evaluating the activity and selectivity of a catalyst.展开更多
In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potentia...In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.展开更多
Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies prov...Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies provide a benchmark for the validation of new software to calculate such potentials. In addition, basic atomic-scale electronic properties such as the (first) ionization energy provide a simple check on the approximation used in the calculation method. We present a comparison of the total energies and ionization energies of atoms Z = 1 - 92 calculated in density functional theory with several levels of exchange-correlation functional and the Hartree-Fock method, comparing ionization energies to experiment. We also investigate the role of relativistic treatment on these energies.展开更多
In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals i...In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals in Density Functional Theory (DFT) with the CASTEP code. The optimized lattice parameters are quite similar for all the functionals. The electronic properties have shown that RbSrBr3 perovskite is a wide direct band gap compound with a band gap energy ranging from 4.296 eV to 4.494 eV for all the functionals. The mechanical parameters like elastic constants, Young’s modulus, Shear modulus, Poisson’s ratio, Pugh’s ratio, and an anisotropic factor reveal that the RbSrBr3 perovskite has ductile behavior and an anisotropic nature which signifies the mechanical stability of the compound. The Debye temperature might withstand lattice vibration heat. High absorption coefficient (>104 cm−1), high optical conductivity, and very low reflectivity have been found in the RbSrBr3 perovskite for all functions. The computed findings on the RbSrBr3 perovskite suggested that the presented studied material is potentially applicable for photodetector and optoelectronic devices.展开更多
By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is usually determined by fitting experimental data or the numerical results of models....By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is usually determined by fitting experimental data or the numerical results of models. In the uniform electron gas limit, our exchangecorrelation functional can exactly reproduce the results of Perdew-Zunger parameterization from the jellium model. By making use of a particular solution, our exchange-correlation functional could take into accotmt the case of non-uniform electron density, and its validity can be confirmed through comparisons of the band structure, equilibrium lattice constant, and bulk modulus of aluminum and silicon. The absence of mechanical prescriptions for the systematic improvement of exchange-correlation functional hinders further development of density-functional theory (DFT), and the formula of exchange-correlation functional given in this study might provide a new perspective to help DFT out of this awkward situation.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to s...Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.展开更多
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ...Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.展开更多
Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop...Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tum...In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.展开更多
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh...The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functio...Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
We conducted a large-scale density-functional theory study on the influence of the exchange-correlation functional in the calculation of electronic band gaps of solids.First,we use the large materials data set that we...We conducted a large-scale density-functional theory study on the influence of the exchange-correlation functional in the calculation of electronic band gaps of solids.First,we use the large materials data set that we have recently proposed to benchmark 21 different functionals,with a particular focus on approximations of the meta-generalized-gradient family.Combining these data with the results for 12 functionals in our previous work,we can analyze in detail the characteristics of each approximation and identify its strong and/or weak points.Beside confirming that mBJ,HLE16 and HSE06 are the most accurate functionals for band gap calculations,we reveal several other interesting functionals,chief among which are the local Slater potential approximation,the GGA AK13LDA,and the meta-GGAs HLE17 and TASK.We also compare the computational efficiency of these different approximations.Relying on these data,we investigate the potential for improvement of a promising subset of functionals by varying their internal parameters.The identified optimal parameters yield a family of functionals fitted for the calculation of band gaps.Finally,we demonstrate how to train machine learning models for accurate band gap prediction,using as input structural and composition data,as well as approximate band gaps obtained from density-functional theory.展开更多
Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density function...Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.展开更多
基金This work was supported by the Key Technologies R&D Program of China(No.2018YFA0208603)the National Natural Science Foundation of China(No.22172150 and No.91945302)+5 种基金the Chinese Academy of Sciences Key Project(QYZDJ-SSW-SLH054)the Start-up Funds of University of Science and Technology of China(No.KY2060000171)the National Natural Science Foundation of Anhui province(No.2108085QB62)USTC Research Funds of the Double First-Class Initiative(No.YD2060002012)K.C.Wong Education(No.GJTD-2020-15)highPerformance Computational Resources provided by the University of Science and Technology of China(http://scc.ustc.edu.cn)and Hefei Advanced Computing center.
文摘Density functional theory(DFT)has been established as a powerful research tool for heterogeneous catalysis research in obtaining key thermodynamic and/or kinetic parameters like adsorption energies,enthalpies of reaction,activation barriers,and rate constants.Understanding of density functional exchangecorrelation approximations is essential to reveal the mechanism and performance of a catalyst.In the present work,we reported the influence of six exchange-correlation density functionals,including PBE,RPBE,BEEF+vdW,optB86b+vdW,SCAN,and SCAN+rVV10,on the adsorption energies,reaction energies and activation barriers of carbon hydrogenation and carbon-carbon couplings during the formation of methane and ethane over Ru(0001)and Ru(1011)surfaces.We found the calculated reaction energies are strongly dependent on exchange-correlation density functionals due to the difference in coordination number between reactants and products on surfaces.The deviation of the calculated elementary reaction energies can be accumulated to a large value for chemical reaction involving multiple steps and vary considerably with different exchange-correlation density functionals calculations.The different exchange-correlation density functionals are found to influence considerably the selectivity of Ru(0001)surface for methane,ethylene,and ethane formation determined by the adsorption energies of intermediates involved.However,the influence on the barriers of the elementary surface reactions and the structural sensitivity of Ru(0001)and Ru(1011)are modest.Our work highlights the limitation of exchange-correlation density functionals on computational catalysis and the importance of choosing a proper exchange-correlation density functional in correctly evaluating the activity and selectivity of a catalyst.
基金The project was supported by the Fund for Scientific Research in Flanders (FWO-Vlaanderen) for Research Grant G021115N.
文摘In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
文摘Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies provide a benchmark for the validation of new software to calculate such potentials. In addition, basic atomic-scale electronic properties such as the (first) ionization energy provide a simple check on the approximation used in the calculation method. We present a comparison of the total energies and ionization energies of atoms Z = 1 - 92 calculated in density functional theory with several levels of exchange-correlation functional and the Hartree-Fock method, comparing ionization energies to experiment. We also investigate the role of relativistic treatment on these energies.
文摘In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals in Density Functional Theory (DFT) with the CASTEP code. The optimized lattice parameters are quite similar for all the functionals. The electronic properties have shown that RbSrBr3 perovskite is a wide direct band gap compound with a band gap energy ranging from 4.296 eV to 4.494 eV for all the functionals. The mechanical parameters like elastic constants, Young’s modulus, Shear modulus, Poisson’s ratio, Pugh’s ratio, and an anisotropic factor reveal that the RbSrBr3 perovskite has ductile behavior and an anisotropic nature which signifies the mechanical stability of the compound. The Debye temperature might withstand lattice vibration heat. High absorption coefficient (>104 cm−1), high optical conductivity, and very low reflectivity have been found in the RbSrBr3 perovskite for all functions. The computed findings on the RbSrBr3 perovskite suggested that the presented studied material is potentially applicable for photodetector and optoelectronic devices.
基金supported by the National High Technology Research and Development Program of China(Grants Nos.2014CB920903 and 2011CBA00100)the National Natural Science Foundation of China(Grant Nos.11021262,107212303,10372107,11174337 and 11225418)+1 种基金the National Basic Research Program of China(Grants No.2012CB937500)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grants No.20121101110046)
文摘By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is usually determined by fitting experimental data or the numerical results of models. In the uniform electron gas limit, our exchangecorrelation functional can exactly reproduce the results of Perdew-Zunger parameterization from the jellium model. By making use of a particular solution, our exchange-correlation functional could take into accotmt the case of non-uniform electron density, and its validity can be confirmed through comparisons of the band structure, equilibrium lattice constant, and bulk modulus of aluminum and silicon. The absence of mechanical prescriptions for the systematic improvement of exchange-correlation functional hinders further development of density-functional theory (DFT), and the formula of exchange-correlation functional given in this study might provide a new perspective to help DFT out of this awkward situation.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金Supported by The Natural Science Foundation of China,No.82374292the Plans for Major Provincial Science and Technology Projects of Anhui Province,No.202303a07020003the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine,No.ZYYCXTD-C-202401.
文摘Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金funded by the National Nature Science Foundation of China(62264006,62574102)“Thousand Talents Program”of Yunnan Province for Young Talents,Innovative Research Teams(in Science and Technology)in the University of Yunnan Province(IRTSTYN),XingDian Talent Support Program for Young Talents,and Frontier Research Team of Kunming University 2023,The Basic Research Project of Yunnan Province(Nos.202201AU070022)+2 种基金Kunming University Talent Introduction Fund(Nos.YJL20024)Yunnan Province Education Department Scientific Research Fund Project(Nos.2024Y759)Undergraduate Innovation and Entrepreneurship Training Program Project of Yunnan Provincial(202411393005)。
文摘Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.
文摘Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
文摘In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.
基金supported by ANR(ANR-21CE16-0008-01)ANR(ANR-21-CE16-0008-02 and ANR-23CE52-0007)+1 种基金UNADEV(A22018CS)(to HN)UNADEV(A22020CS)(to SB)。
文摘The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金supported by the National Natural Science Foundation of China,No.82371399(to YY)the Natural Science Foundation of Jiangsu Province,No.BK20221206(to YY)+1 种基金the Young Elite Scientists Sponsorship Program of Jiangsu Province,No.TJ-2022-028(to YY)the Scientific Research Program of Wuxi Health Commission,No.Z202302(to LY)。
文摘Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金M.A.L.M.and S.B.acknowledge partial support from the DFG through the projects TRR 227,SFB 1375,FOR 2857,BO 4280/8-1,and MA 6787/9-1.
文摘We conducted a large-scale density-functional theory study on the influence of the exchange-correlation functional in the calculation of electronic band gaps of solids.First,we use the large materials data set that we have recently proposed to benchmark 21 different functionals,with a particular focus on approximations of the meta-generalized-gradient family.Combining these data with the results for 12 functionals in our previous work,we can analyze in detail the characteristics of each approximation and identify its strong and/or weak points.Beside confirming that mBJ,HLE16 and HSE06 are the most accurate functionals for band gap calculations,we reveal several other interesting functionals,chief among which are the local Slater potential approximation,the GGA AK13LDA,and the meta-GGAs HLE17 and TASK.We also compare the computational efficiency of these different approximations.Relying on these data,we investigate the potential for improvement of a promising subset of functionals by varying their internal parameters.The identified optimal parameters yield a family of functionals fitted for the calculation of band gaps.Finally,we demonstrate how to train machine learning models for accurate band gap prediction,using as input structural and composition data,as well as approximate band gaps obtained from density-functional theory.
基金supported by the National Natural Science Foundation of China(Nos.22393912,22425301,22373091,22173088)the AI for Science Foundation of Fudan University(No.Fudan X24AI023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450101).
文摘Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.