On Nov.4^(th), AQSIQ (General Administration of Quality Supervision,Inspection and Quarantine of the People' s Republic of China), SAC (Standardization Administrationof China), National Audit Office of China (CNAO...On Nov.4^(th), AQSIQ (General Administration of Quality Supervision,Inspection and Quarantine of the People' s Republic of China), SAC (Standardization Administrationof China), National Audit Office of China (CNAO), and National Ministry of Finance of China jointlyheld the conference press on the national standard of Information Technology--Data Interface ofAccounting Software (GB/T 19581-2004) in Beijing. The standard was approved and issued on Sept. 20,2004 by AQSIQ and SAC, and it would come into effect all over the whole nation from January 1^(st),2005. Pu Changcheng, Vice Director of AQSIQ, Shi Aizhong, Vice Director of CNAO, Li Zhonghai. amember of the Party Group of AQSIQ and Director of SAC, the other leaders of concerned departmentssuch as National Ministry of Finance, National Telegraphy Office, and etc. attended the ConferencePress and made speeches. They fully affirmed the important significance and the achievements onstandardization work of electronic government business, and also they set new demands on the workfor the future.展开更多
Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative str...Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative structures of radiators and heat exchangers to be manufactured. The paper reviews the application of additive manufacturing in new radiators and heat exchangers. The technology of additive manufacturing boosts the development of new radiators and heat exchangers, which improves heat dissipation performance and heat exchange efficiency. This paper will provide a new idea and method for the development of radiators and heat exchangers via the application of additive manufacturing.展开更多
Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored...Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems.展开更多
The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive se...The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4%展开更多
Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of ...Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of elliptical fin-and-tube heat exchanger under different inclination angles.In this study,air flow that is in the transitional regime is selected as the working fluid.Reynolds numbers at the inlet are varied in a range of 1300 to 2100,and the shear stress transport k-ωturbulence model is selected to solve the non-closure of basic turbulence equations.The ellipticity ratios of the tubes which are used for the analysis are between 0.6 and 1.0,and the inclination angles are varied from 15°to 75°.The effects of different inclination angles of vortex generators on the Colburn factor j,friction factor f,and efficiency index j/f are analyzed.The friction and Colburn factors are observed to increase with increasing vortex generator inclination angles.It is found that the efficiency factors for a 15°vortex generator inclination angle at 0.6,0.7,0.8,and 0.9 ellipticity ratios improve compared to the corresponding cases with no vortex generator.However,the vortex generator cannot improve the efficiency factor of the circular tube heat exchanger.The 3 D CFD method employed by this study has great potential for use in optimally designing the arrangement of the vortex generators to enhance the performance of heat exchangers.展开更多
This paper presents a thermophysical study approach for a pure environmental control system(ECS),incorporating the geometric dimensions of heat exchangers,ram air duct,and air cycle machine(ACM)blades of the Sabreline...This paper presents a thermophysical study approach for a pure environmental control system(ECS),incorporating the geometric dimensions of heat exchangers,ram air duct,and air cycle machine(ACM)blades of the Sabreliner’s environmental control system.Real flight scenarios are simulated by considering flight input variables such as altitude,aircraft speed,compression ratio of the air cycle machine,and the mass flow rate of bleed air.The study evaluates the coefficient of performance(COP)of the environmental control system,the heat exchanger efficiencies,and the work distribution of the air cycle machine based on five flight scenarios,with a particular focus on considering the effects of humidity on environmental control system performance.The results demonstrate that at cruising altitude(11,000 m),air humidity conditions allow an increase in the COP of around 9.28%compared to dry conditions.Conversely,on land,humidity conditions reduce the performance by 4.26%compared to dry conditions.It was also found that the effects of humidity at high aircraft speeds become negligible.In general terms,the humidity conditions in the air proved to have positive effects on the environmental control system’s performance but negative effects on the heat exchanger efficiencies,reducing them by 0.22%.Additionally,land conditions reflect significant improvements in performance when the compression ratio of the air cycle machine is varied.Furthermore,in the work distribution of the air cycle machine,humidity conditions were demonstrated to consume 2.91%less work fromthe turbine compared to dry conditions.展开更多
Three-dimensional(3D) display technology—a cutting-edge medium for human-machine interaction—enhances visual information density via image dimensional expansion and reduces the cognitive load to improve the efficien...Three-dimensional(3D) display technology—a cutting-edge medium for human-machine interaction—enhances visual information density via image dimensional expansion and reduces the cognitive load to improve the efficiency of information exchange [1–3].展开更多
In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,...In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,due to the small space,human metabolic pollutant(such as CO_(2))is more likely to accumulate,and the air is not easily circulated.In this paper,a full-size experimental platform is set up with three types of ventilation modes to explore the exclusion efficiency of metabolic pollutants and the overall distribution of age of air under these ventilation modes.The conclusions showed that the mean values of metabolic pollutant exclusion rates for the different ventilation modalities varied very little across the spatial dimensions of the confined space but varied considerably in the area around the head.The double-side attached ventilation method was the most effective in removing human metabolic pollutants,especially in the head region(CN≥0.92),while the single-wall attached ventilation method had the best air exchange efficiency(η≥0.85).This suggests an inconsistent distribution of CO_(2) and age of air,which is contrary to general common sense.The conclusions of this paper can guide the design of ventilation for tiny sleeping spaces.展开更多
文摘On Nov.4^(th), AQSIQ (General Administration of Quality Supervision,Inspection and Quarantine of the People' s Republic of China), SAC (Standardization Administrationof China), National Audit Office of China (CNAO), and National Ministry of Finance of China jointlyheld the conference press on the national standard of Information Technology--Data Interface ofAccounting Software (GB/T 19581-2004) in Beijing. The standard was approved and issued on Sept. 20,2004 by AQSIQ and SAC, and it would come into effect all over the whole nation from January 1^(st),2005. Pu Changcheng, Vice Director of AQSIQ, Shi Aizhong, Vice Director of CNAO, Li Zhonghai. amember of the Party Group of AQSIQ and Director of SAC, the other leaders of concerned departmentssuch as National Ministry of Finance, National Telegraphy Office, and etc. attended the ConferencePress and made speeches. They fully affirmed the important significance and the achievements onstandardization work of electronic government business, and also they set new demands on the workfor the future.
文摘Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative structures of radiators and heat exchangers to be manufactured. The paper reviews the application of additive manufacturing in new radiators and heat exchangers. The technology of additive manufacturing boosts the development of new radiators and heat exchangers, which improves heat dissipation performance and heat exchange efficiency. This paper will provide a new idea and method for the development of radiators and heat exchangers via the application of additive manufacturing.
基金supported by the Science Fund for Distinguished Young Scholars in the Xinjiang Uygur Autonomous Region (QN2015JQ007)
文摘Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems.
文摘The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4%
基金the financial support by National Natural Science Foundation of China(Grant No.51879201,U1867215)。
文摘Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of elliptical fin-and-tube heat exchanger under different inclination angles.In this study,air flow that is in the transitional regime is selected as the working fluid.Reynolds numbers at the inlet are varied in a range of 1300 to 2100,and the shear stress transport k-ωturbulence model is selected to solve the non-closure of basic turbulence equations.The ellipticity ratios of the tubes which are used for the analysis are between 0.6 and 1.0,and the inclination angles are varied from 15°to 75°.The effects of different inclination angles of vortex generators on the Colburn factor j,friction factor f,and efficiency index j/f are analyzed.The friction and Colburn factors are observed to increase with increasing vortex generator inclination angles.It is found that the efficiency factors for a 15°vortex generator inclination angle at 0.6,0.7,0.8,and 0.9 ellipticity ratios improve compared to the corresponding cases with no vortex generator.However,the vortex generator cannot improve the efficiency factor of the circular tube heat exchanger.The 3 D CFD method employed by this study has great potential for use in optimally designing the arrangement of the vortex generators to enhance the performance of heat exchangers.
文摘This paper presents a thermophysical study approach for a pure environmental control system(ECS),incorporating the geometric dimensions of heat exchangers,ram air duct,and air cycle machine(ACM)blades of the Sabreliner’s environmental control system.Real flight scenarios are simulated by considering flight input variables such as altitude,aircraft speed,compression ratio of the air cycle machine,and the mass flow rate of bleed air.The study evaluates the coefficient of performance(COP)of the environmental control system,the heat exchanger efficiencies,and the work distribution of the air cycle machine based on five flight scenarios,with a particular focus on considering the effects of humidity on environmental control system performance.The results demonstrate that at cruising altitude(11,000 m),air humidity conditions allow an increase in the COP of around 9.28%compared to dry conditions.Conversely,on land,humidity conditions reduce the performance by 4.26%compared to dry conditions.It was also found that the effects of humidity at high aircraft speeds become negligible.In general terms,the humidity conditions in the air proved to have positive effects on the environmental control system’s performance but negative effects on the heat exchanger efficiencies,reducing them by 0.22%.Additionally,land conditions reflect significant improvements in performance when the compression ratio of the air cycle machine is varied.Furthermore,in the work distribution of the air cycle machine,humidity conditions were demonstrated to consume 2.91%less work fromthe turbine compared to dry conditions.
文摘Three-dimensional(3D) display technology—a cutting-edge medium for human-machine interaction—enhances visual information density via image dimensional expansion and reduces the cognitive load to improve the efficiency of information exchange [1–3].
基金This study was jointly funded by Shaanxi Provincial Overseas Scholars Scientific and Technological Activities Selection Project(2022-005)Shaanxi Provincial Key R&D Program International Science and Technology Cooperation Program Project(2023-GHZD-28),and The Youth Innovation Team of Shaanxi Universities.
文摘In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,due to the small space,human metabolic pollutant(such as CO_(2))is more likely to accumulate,and the air is not easily circulated.In this paper,a full-size experimental platform is set up with three types of ventilation modes to explore the exclusion efficiency of metabolic pollutants and the overall distribution of age of air under these ventilation modes.The conclusions showed that the mean values of metabolic pollutant exclusion rates for the different ventilation modalities varied very little across the spatial dimensions of the confined space but varied considerably in the area around the head.The double-side attached ventilation method was the most effective in removing human metabolic pollutants,especially in the head region(CN≥0.92),while the single-wall attached ventilation method had the best air exchange efficiency(η≥0.85).This suggests an inconsistent distribution of CO_(2) and age of air,which is contrary to general common sense.The conclusions of this paper can guide the design of ventilation for tiny sleeping spaces.