In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian...In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian EP(HEP) and Liouvillian EP(LEP) on those violations. We consider an open system consisting of two coupled qubits and each qubit is contacted with a thermal bath at a different temperature. In the case of omitting quantum jumps, we find that the system exhibits a second-order HEP, which separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI and NSIT conditions can be violated in both regimes and not violated at the HEP. In the case of without omitting quantum jumps, we find that the system exhibits a third-order LEP, which also separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI can only be violated in the underdamped regime with large coupling strength between the qubits.Conversely, the NSIT conditions can be violated in both regimes, as well as at the LEP, except in the overdamped regime with small coupling strength between the qubits. Comparing the violations of the LGI and NSIT conditions with HEP and LEP, we find that the quantum jumps would reduce the generation of coherence, enhance the decoherence, and lead to narrower parameter regimes that the LGI and NSIT conditions can be violated. Furthermore, in both cases,the NSIT conditions can be violated in a wider parameter regime than the LGI.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide t...We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.展开更多
We propose a quasi-one-dimensional non-Hermitian Creutz ladder with an entirely flat spectrum by introducing alternating gain and loss components while maintaining inversion symmetry.Destructive interference generates...We propose a quasi-one-dimensional non-Hermitian Creutz ladder with an entirely flat spectrum by introducing alternating gain and loss components while maintaining inversion symmetry.Destructive interference generates a flat spectrum at the exceptional point,where the Creutz ladder maintains coalesced and degenerate eigenvalues with compact localized states distributed in a single plaquette.All excitations are completely confined within the localization area,unaffected by gain and loss.Single-site excitations exhibit nonunitary dynamics with intensities increasing due to level coalescence,while multiple-site excitations may display oscillating or constant intensities at the exceptional point.These results provide insights into the fascinating dynamics of non-Hermitian localization,where level coalescence and degeneracy coexist at the exceptional point.展开更多
Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an impo...Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an important goal of basic human rights protection and data legislation.Personal information protection involves comprehensive considerations among various values,and the balanced structure between personal information rights and other rights systems has become the key to legislation on personal information protection.The“news exception”is a prominent example representing the balanced structure of personal information protection.As a societal instrument,news not only pursues commercial value but also advocates freedom of expression and public value.There exists a natural tension between news and personal information protection.The“news exception”of the balanced structure has become a fundamental requirement and important connotation for constructing a system for protecting personal information.The balanced structure of the“news exception”requires a reasonable definition of the concept and purpose of news,and both the self-discipline within the news industry and the judicial intervention are necessary factors.China has preliminarily completed the top-level legislative design of personal information protection through laws such as the Civil Code of the People’s Republic of China(PRC)and the Personal Information Protection Law of the People’s Republic of China.However,the balanced mechanism of the“news exception”has not yet been fully established in China.A“news exception”based on the ideas of balance and the improvement of the institutional system is the fundamental principle for the development of China’s personal information protection system.展开更多
Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-per...Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-performance sensors.The exceptional point,a spectral singularity widely existing in non-Hermitian systems,provides an indispensable route to enhance the sensitivity of optical detection.However,the exceptional point of the forementioned systems is set once the system is built or fabricated,and machining errors make it hard to reach such a state precisely.To this end,we develop a highly tunable and reconfigurable exceptional point system,i.e.,a single spoof plasmonic resonator suspended above a substrate and coupled with two freestanding Rayleigh scatterers.Our design offers great flexibility to control exceptional point states,enabling us to dynamically reconfigure the exceptional point formed by various multipolar modes across a broadband frequency range.Specifically,we experimentally implement five distinct exceptional points by precisely manipulating the positions of two movable Rayleigh scatterers.In addition,the enhanced perturbation strength offers remarkable sensitivity enhancement for detecting deep-subwavelength particles with the minimum dimension down to 0.001λ(withλto be the free-space wavelength).展开更多
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 11775019 and 11875086)。
文摘In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian EP(HEP) and Liouvillian EP(LEP) on those violations. We consider an open system consisting of two coupled qubits and each qubit is contacted with a thermal bath at a different temperature. In the case of omitting quantum jumps, we find that the system exhibits a second-order HEP, which separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI and NSIT conditions can be violated in both regimes and not violated at the HEP. In the case of without omitting quantum jumps, we find that the system exhibits a third-order LEP, which also separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI can only be violated in the underdamped regime with large coupling strength between the qubits.Conversely, the NSIT conditions can be violated in both regimes, as well as at the LEP, except in the overdamped regime with small coupling strength between the qubits. Comparing the violations of the LGI and NSIT conditions with HEP and LEP, we find that the quantum jumps would reduce the generation of coherence, enhance the decoherence, and lead to narrower parameter regimes that the LGI and NSIT conditions can be violated. Furthermore, in both cases,the NSIT conditions can be violated in a wider parameter regime than the LGI.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金partly funded by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA091 and ZR2018MA044)Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province (Research and Innovation Team on Materials Modification and Optoelectronic Devices at extreme conditions)。
文摘We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.12222504 and 11975128).
文摘We propose a quasi-one-dimensional non-Hermitian Creutz ladder with an entirely flat spectrum by introducing alternating gain and loss components while maintaining inversion symmetry.Destructive interference generates a flat spectrum at the exceptional point,where the Creutz ladder maintains coalesced and degenerate eigenvalues with compact localized states distributed in a single plaquette.All excitations are completely confined within the localization area,unaffected by gain and loss.Single-site excitations exhibit nonunitary dynamics with intensities increasing due to level coalescence,while multiple-site excitations may display oscillating or constant intensities at the exceptional point.These results provide insights into the fascinating dynamics of non-Hermitian localization,where level coalescence and degeneracy coexist at the exceptional point.
文摘Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an important goal of basic human rights protection and data legislation.Personal information protection involves comprehensive considerations among various values,and the balanced structure between personal information rights and other rights systems has become the key to legislation on personal information protection.The“news exception”is a prominent example representing the balanced structure of personal information protection.As a societal instrument,news not only pursues commercial value but also advocates freedom of expression and public value.There exists a natural tension between news and personal information protection.The“news exception”of the balanced structure has become a fundamental requirement and important connotation for constructing a system for protecting personal information.The balanced structure of the“news exception”requires a reasonable definition of the concept and purpose of news,and both the self-discipline within the news industry and the judicial intervention are necessary factors.China has preliminarily completed the top-level legislative design of personal information protection through laws such as the Civil Code of the People’s Republic of China(PRC)and the Personal Information Protection Law of the People’s Republic of China.However,the balanced mechanism of the“news exception”has not yet been fully established in China.A“news exception”based on the ideas of balance and the improvement of the institutional system is the fundamental principle for the development of China’s personal information protection system.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871215,61771238,and 61701246)the National Key Research and Development Program of China(Grant No.2022YFA1404903)+9 种基金the Fund of Qing Lan Project of Jiangsu Province(Grant No.1004-YQR22031)the Six Talent Peaks Project in Jiangsu Province(Grant No.2018-GDZB-009)the Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)(Grant Nos.1004-ILA22002 and 1004-ILA22068)the Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics(Grant No.xcxjh20210408)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0364)the Fundamental Research Funds for the Central Universities,NUAA(Grant No.NS2023022)the Nanjing University of Aeronautics and Astronautics Startup Grant(Grant No.1004-YQR23031)the Distinguished Professor Fund of Jiangsu Province(Grant No.1004-YQR24010)Fundamental Research Funds for the Central Universities,NUAA(No.NE2024007)the Singapore National Research Foundation Competitive Research Program(NRF-CRP22-2019-0006).
文摘Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-performance sensors.The exceptional point,a spectral singularity widely existing in non-Hermitian systems,provides an indispensable route to enhance the sensitivity of optical detection.However,the exceptional point of the forementioned systems is set once the system is built or fabricated,and machining errors make it hard to reach such a state precisely.To this end,we develop a highly tunable and reconfigurable exceptional point system,i.e.,a single spoof plasmonic resonator suspended above a substrate and coupled with two freestanding Rayleigh scatterers.Our design offers great flexibility to control exceptional point states,enabling us to dynamically reconfigure the exceptional point formed by various multipolar modes across a broadband frequency range.Specifically,we experimentally implement five distinct exceptional points by precisely manipulating the positions of two movable Rayleigh scatterers.In addition,the enhanced perturbation strength offers remarkable sensitivity enhancement for detecting deep-subwavelength particles with the minimum dimension down to 0.001λ(withλto be the free-space wavelength).