A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge...A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing.展开更多
Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral...Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral marketing and public opinion monitoring. However, we always ignore the tendency of nodes' behaviors and sentiment in the researches of influence maximization. On general, users' sentiment determines users behaviors, and users' behaviors reflect the influence between users in social network. In this paper, we design a training model of sentimental words to expand the existing sentimental dictionary with the marked-commentdata set, and propose an influence spread model considering both the tendency of users' behaviors and sentiment named as BSIS (Behavior and Sentiment Influence Spread) to depict and compute the influence between nodes. We also propose an algorithm for influence maximization named as BS-G (BSIS with Greedy Algorithm) to select the initial node. In the experiments, we use two real social network data sets on the Hadoop and Spark distributed cluster platform for experiments, and the experiment results show that BSIS model and BS-G algorithm on big data platform have better influence spread effects and higher quality of the selection of seed node comparing with the approaches with traditional IC, LT and CDNF models.展开更多
A proximal iterative algorithm for the mulitivalue operator equation 0∈T(x)is presented,where T is a maximal monotone operator.It is an improvement of the proximal point algorithm as well know.The convergence of the ...A proximal iterative algorithm for the mulitivalue operator equation 0∈T(x)is presented,where T is a maximal monotone operator.It is an improvement of the proximal point algorithm as well know.The convergence of the algorithm is discussed and all example is given.展开更多
In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde...In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde]k ||\left\| { e^k } \right\| \leqslant \eta _k \left\| { x^k - \tilde x^k } \right\| with ?k = 0¥ ( hk - 1 ) < + ¥\sum\limits_{k = 0}^\infty {\left( {\eta _k - 1} \right)} and infk \geqslant 0 hk = m\geqslant 1\mathop {\inf }\limits_{k \geqslant 0} \eta _k = \mu \geqslant 1 . Here, the restrictions on {η k} are very different from the ones on {η k}, given by He et al (Science in China Ser. A, 2002, 32 (11): 1026–1032.) that supk \geqslant 0 hk = v < 1\mathop {\sup }\limits_{k \geqslant 0} \eta _k = v . Moreover, the characteristic conditions of the convergence of the modified approximate proximal point algorithm are presented by virtue of the new technique very different from the ones given by He et al.展开更多
Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be ...Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.展开更多
Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated p...Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated probability of node increases with its newly increasing activated neighbors, which also decreases with time. In this paper, we focus on the problem that selects k seeds based on the cascade model with diffusion decay to maximize the spread of influence in social networks. First, we extend the independent cascade model to incorporate the diffusion decay factor, called as the cascade model with diffusion decay and abbreviated as CMDD. Then, we discuss the objective function of maximizing the spread of influence under the CMDD, which is NP-hard. We further prove the monotonicity and submodularity of this objective function. Finally, we use the greedy algorithm to approximate the optimal result with the ration of 1 ? 1/e.展开更多
Submodular maximization is a significant area of interest in combinatorial optimization.It has various real-world applications.In recent years,streaming algorithms for submodular maximization have gained attention,all...Submodular maximization is a significant area of interest in combinatorial optimization.It has various real-world applications.In recent years,streaming algorithms for submodular maximization have gained attention,allowing realtime processing of large data sets by examining each piece of data only once.However,most of the current state-of-the-art algorithms are only applicable to monotone submodular maximization.There are still significant gaps in the approximation ratios between monotone and non-monotone objective functions.In this paper,we propose a streaming algorithm framework for non-monotone submodular maximization and use this framework to design deterministic streaming algorithms for the d-knapsack constraint and the knapsack constraint.Our 1-pass streaming algorithm for the d-knapsack constraint has a 1/4(d+1)-∈approximation ratio,using O(BlogB/∈)memory,and O(logB/∈)query time per element,where B=MIN(n,b)is the maximum number of elements that the knapsack can store.As a special case of the d-knapsack constraint,we have the 1-pass streaming algorithm with a 1/8-∈approximation ratio to the knapsack constraint.To our knowledge,there is currently no streaming algorithm for this constraint when the objective function is non-monotone,even when d=1.In addition,we propose a multi-pass streaming algorithm with 1/6-∈approximation,which stores O(B)elements.展开更多
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ...Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that ex...Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array ...In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.展开更多
Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,...Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm(SSABA)is presented to provide quasi-optimal solutions to various optimization problems.In the initial iterations of the algorithm,the step index is set to the highest value for a comprehensive search of the search space.Then,with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal,the step index is reduced to reach the minimum value at the end of the algorithm implementation.SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types.The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm.In addition,the performance of the proposed SSABA is compared with the performance of eight well-known algorithms,including Particle Swarm Optimization(PSO),Genetic Algorithm(GA),Teaching-Learning Based Optimization(TLBO),Gravitational Search Algorithm(GSA),Grey Wolf Optimization(GWO),Whale Optimization Algorithm(WOA),Marine Predators Algorithm(MPA),and Tunicate Swarm Algorithm(TSA).The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.展开更多
In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged withi...In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged within a specified survey region is that to make the number of sensor elements as small as possible,meanwhile without deteriorating imaging quality.For this end,we propose a novel methodology of arranging sensors in an optimal manner,exploring the concept of information capacity developed originally in the communication society.The proposed scheme reduces mathematically the design of a sparse sensor array into solving a combinatorial optimization problem,which can be resolved efficiently using widely adopted Simultaneous Perturbation and Statistical Algorithm(SPSA).Three sets of numerical examples of designing optimal sensor array are provided to demonstrate the performance of proposed methodology.展开更多
A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) i...A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.展开更多
By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by...By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.展开更多
Considering that the probability distribution of random variables in stochastic programming usually has incomplete information due to a perfect sample data in many real applications, this paper discusses a class of tw...Considering that the probability distribution of random variables in stochastic programming usually has incomplete information due to a perfect sample data in many real applications, this paper discusses a class of two-stage stochastic programming problems modeling with maximum minimum expectation compensation criterion (MaxEMin) under the probability distribution having linear partial information (LPI). In view of the nondifferentiability of this kind of stochastic programming modeling, an improved complex algorithm is designed and analyzed. This algorithm can effectively solve the nondifferentiable stochastic programming problem under LPI through the variable polyhedron iteration. The calculation and discussion of numerical examples show the effectiveness of the proposed algorithm.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
基金the National Natural Science Foundation of China(79990584)
文摘A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing.
文摘Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral marketing and public opinion monitoring. However, we always ignore the tendency of nodes' behaviors and sentiment in the researches of influence maximization. On general, users' sentiment determines users behaviors, and users' behaviors reflect the influence between users in social network. In this paper, we design a training model of sentimental words to expand the existing sentimental dictionary with the marked-commentdata set, and propose an influence spread model considering both the tendency of users' behaviors and sentiment named as BSIS (Behavior and Sentiment Influence Spread) to depict and compute the influence between nodes. We also propose an algorithm for influence maximization named as BS-G (BSIS with Greedy Algorithm) to select the initial node. In the experiments, we use two real social network data sets on the Hadoop and Spark distributed cluster platform for experiments, and the experiment results show that BSIS model and BS-G algorithm on big data platform have better influence spread effects and higher quality of the selection of seed node comparing with the approaches with traditional IC, LT and CDNF models.
基金Supported by the National Natural Science Foundation of China
文摘A proximal iterative algorithm for the mulitivalue operator equation 0∈T(x)is presented,where T is a maximal monotone operator.It is an improvement of the proximal point algorithm as well know.The convergence of the algorithm is discussed and all example is given.
基金Supported both by the Teaching and Research Award Fund for Outstanding Young Teachers inHigher Educational Institutions of MOEChinaand by the Dawn Program Fund in Shanghai
文摘In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde]k ||\left\| { e^k } \right\| \leqslant \eta _k \left\| { x^k - \tilde x^k } \right\| with ?k = 0¥ ( hk - 1 ) < + ¥\sum\limits_{k = 0}^\infty {\left( {\eta _k - 1} \right)} and infk \geqslant 0 hk = m\geqslant 1\mathop {\inf }\limits_{k \geqslant 0} \eta _k = \mu \geqslant 1 . Here, the restrictions on {η k} are very different from the ones on {η k}, given by He et al (Science in China Ser. A, 2002, 32 (11): 1026–1032.) that supk \geqslant 0 hk = v < 1\mathop {\sup }\limits_{k \geqslant 0} \eta _k = v . Moreover, the characteristic conditions of the convergence of the modified approximate proximal point algorithm are presented by virtue of the new technique very different from the ones given by He et al.
文摘Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.
基金This paper was supported by the National Natural Science Foundation of China (61562091), Natural Science Foundation of Yunnan Province (2014FA023,201501CF00022), Program for Innovative Research Team in Yunnan University (XT412011), and Program for Excellent Young Talents of Yunnan University (XT412003).
文摘Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated probability of node increases with its newly increasing activated neighbors, which also decreases with time. In this paper, we focus on the problem that selects k seeds based on the cascade model with diffusion decay to maximize the spread of influence in social networks. First, we extend the independent cascade model to incorporate the diffusion decay factor, called as the cascade model with diffusion decay and abbreviated as CMDD. Then, we discuss the objective function of maximizing the spread of influence under the CMDD, which is NP-hard. We further prove the monotonicity and submodularity of this objective function. Finally, we use the greedy algorithm to approximate the optimal result with the ration of 1 ? 1/e.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62325210 and 62272441).
文摘Submodular maximization is a significant area of interest in combinatorial optimization.It has various real-world applications.In recent years,streaming algorithms for submodular maximization have gained attention,allowing realtime processing of large data sets by examining each piece of data only once.However,most of the current state-of-the-art algorithms are only applicable to monotone submodular maximization.There are still significant gaps in the approximation ratios between monotone and non-monotone objective functions.In this paper,we propose a streaming algorithm framework for non-monotone submodular maximization and use this framework to design deterministic streaming algorithms for the d-knapsack constraint and the knapsack constraint.Our 1-pass streaming algorithm for the d-knapsack constraint has a 1/4(d+1)-∈approximation ratio,using O(BlogB/∈)memory,and O(logB/∈)query time per element,where B=MIN(n,b)is the maximum number of elements that the knapsack can store.As a special case of the d-knapsack constraint,we have the 1-pass streaming algorithm with a 1/8-∈approximation ratio to the knapsack constraint.To our knowledge,there is currently no streaming algorithm for this constraint when the objective function is non-monotone,even when d=1.In addition,we propose a multi-pass streaming algorithm with 1/6-∈approximation,which stores O(B)elements.
基金the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(HHS19641X003).
文摘Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China (No.60603088)
文摘Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 61302141)
文摘In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.
基金PT(corresponding author)and SH was supported by the Excellence project PrF UHK No.2202/2020-2022Long-term development plan of UHK for year 2021,University of Hradec Králové,Czech Republic,https://www.uhk.cz/en/faculty-of-science/about-faculty/officia l-board/internal-regulations-and-governing-acts/governing-acts/deans-decision/2020#grant-compe tition-of-fos-uhk-excellence-for-2020.
文摘Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm(SSABA)is presented to provide quasi-optimal solutions to various optimization problems.In the initial iterations of the algorithm,the step index is set to the highest value for a comprehensive search of the search space.Then,with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal,the step index is reduced to reach the minimum value at the end of the algorithm implementation.SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types.The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm.In addition,the performance of the proposed SSABA is compared with the performance of eight well-known algorithms,including Particle Swarm Optimization(PSO),Genetic Algorithm(GA),Teaching-Learning Based Optimization(TLBO),Gravitational Search Algorithm(GSA),Grey Wolf Optimization(GWO),Whale Optimization Algorithm(WOA),Marine Predators Algorithm(MPA),and Tunicate Swarm Algorithm(TSA).The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.
文摘In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged within a specified survey region is that to make the number of sensor elements as small as possible,meanwhile without deteriorating imaging quality.For this end,we propose a novel methodology of arranging sensors in an optimal manner,exploring the concept of information capacity developed originally in the communication society.The proposed scheme reduces mathematically the design of a sparse sensor array into solving a combinatorial optimization problem,which can be resolved efficiently using widely adopted Simultaneous Perturbation and Statistical Algorithm(SPSA).Three sets of numerical examples of designing optimal sensor array are provided to demonstrate the performance of proposed methodology.
基金Project(60772088) supported by the National Natural Science Foundation of China
文摘A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.
基金Supported by China Postdoctoral Science Foundation(No.20060390660)Science and Technology Development Plan of Tianjin(No.06YFGZGX05600)+1 种基金Scientific Research Foundation of Liu Hui Center for Applied MathematicsNankai University-Tianjin University.
文摘By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.
文摘Considering that the probability distribution of random variables in stochastic programming usually has incomplete information due to a perfect sample data in many real applications, this paper discusses a class of two-stage stochastic programming problems modeling with maximum minimum expectation compensation criterion (MaxEMin) under the probability distribution having linear partial information (LPI). In view of the nondifferentiability of this kind of stochastic programming modeling, an improved complex algorithm is designed and analyzed. This algorithm can effectively solve the nondifferentiable stochastic programming problem under LPI through the variable polyhedron iteration. The calculation and discussion of numerical examples show the effectiveness of the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China (51507015, 61773402, 61540037, 71271215, 61233008, 51425701, 70921001, 51577014), the Natural Science Foundation of Hunan Province (2015JJ3008), the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2014ZNDL002), and Hunan Province Science and Technology Program(2015NK3035).
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.