期刊文献+
共找到854篇文章
< 1 2 43 >
每页显示 20 50 100
Parallel Expectation-Maximization Algorithm for Large Databases
1
作者 黄浩 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期420-424,共5页
A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge... A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing. 展开更多
关键词 expectation-maximization (EM) algorithm incremental EM lazy EM parallel EM
在线阅读 下载PDF
Mining Initial Nodes with BSIS Model and BS-G Algorithm on Social Networks for Influence Maximization
2
作者 Xiaoheng Deng Dejuan Cao +2 位作者 Yan Pan Hailan Shen Fang Long 《国际计算机前沿大会会议论文集》 2017年第2期33-35,共3页
Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral... Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral marketing and public opinion monitoring. However, we always ignore the tendency of nodes' behaviors and sentiment in the researches of influence maximization. On general, users' sentiment determines users behaviors, and users' behaviors reflect the influence between users in social network. In this paper, we design a training model of sentimental words to expand the existing sentimental dictionary with the marked-commentdata set, and propose an influence spread model considering both the tendency of users' behaviors and sentiment named as BSIS (Behavior and Sentiment Influence Spread) to depict and compute the influence between nodes. We also propose an algorithm for influence maximization named as BS-G (BSIS with Greedy Algorithm) to select the initial node. In the experiments, we use two real social network data sets on the Hadoop and Spark distributed cluster platform for experiments, and the experiment results show that BSIS model and BS-G algorithm on big data platform have better influence spread effects and higher quality of the selection of seed node comparing with the approaches with traditional IC, LT and CDNF models. 展开更多
关键词 Social networks INFLUENCE maximization Behavior TENDENCY SENTIMENT TENDENCY GREEDY algorithm
在线阅读 下载PDF
AN ITERATIVE ALGORITHM FOR MAXIMAL MONOTONE MULTIVALUED OPERATOR EQUATIONS 被引量:1
3
作者 Xiao Jinsheng Sun Lelin 《Acta Mathematica Scientia》 SCIE CSCD 2001年第2期152-158,共7页
A proximal iterative algorithm for the mulitivalue operator equation 0∈T(x)is presented,where T is a maximal monotone operator.It is an improvement of the proximal point algorithm as well know.The convergence of the ... A proximal iterative algorithm for the mulitivalue operator equation 0∈T(x)is presented,where T is a maximal monotone operator.It is an improvement of the proximal point algorithm as well know.The convergence of the algorithm is discussed and all example is given. 展开更多
关键词 Iterative algorithm maximal monotone operator multivalued operator
在线阅读 下载PDF
Deterministic streaming algorithms for non-monotone submodular maximization
4
作者 Xiaoming SUN Jialin ZHANG Shuo ZHANG 《Frontiers of Computer Science》 2025年第6期103-114,共12页
Submodular maximization is a significant area of interest in combinatorial optimization.It has various real-world applications.In recent years,streaming algorithms for submodular maximization have gained attention,all... Submodular maximization is a significant area of interest in combinatorial optimization.It has various real-world applications.In recent years,streaming algorithms for submodular maximization have gained attention,allowing realtime processing of large data sets by examining each piece of data only once.However,most of the current state-of-the-art algorithms are only applicable to monotone submodular maximization.There are still significant gaps in the approximation ratios between monotone and non-monotone objective functions.In this paper,we propose a streaming algorithm framework for non-monotone submodular maximization and use this framework to design deterministic streaming algorithms for the d-knapsack constraint and the knapsack constraint.Our 1-pass streaming algorithm for the d-knapsack constraint has a 1/4(d+1)-∈approximation ratio,using O(BlogB/∈)memory,and O(logB/∈)query time per element,where B=MIN(n,b)is the maximum number of elements that the knapsack can store.As a special case of the d-knapsack constraint,we have the 1-pass streaming algorithm with a 1/8-∈approximation ratio to the knapsack constraint.To our knowledge,there is currently no streaming algorithm for this constraint when the objective function is non-monotone,even when d=1.In addition,we propose a multi-pass streaming algorithm with 1/6-∈approximation,which stores O(B)elements. 展开更多
关键词 submodular maximization streaming algorithms cardinality constraint knapsack constraint
原文传递
MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS FOR FINDING ROOTS OF MAXIMAL MONOTONE OPERATORS
5
作者 曾六川 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第3期293-301,共9页
In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde... In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde]k ||\left\| { e^k } \right\| \leqslant \eta _k \left\| { x^k - \tilde x^k } \right\| with ?k = 0¥ ( hk - 1 ) < + ¥\sum\limits_{k = 0}^\infty {\left( {\eta _k - 1} \right)} and infk \geqslant 0 hk = m\geqslant 1\mathop {\inf }\limits_{k \geqslant 0} \eta _k = \mu \geqslant 1 . Here, the restrictions on {η k} are very different from the ones on {η k}, given by He et al (Science in China Ser. A, 2002, 32 (11): 1026–1032.) that supk \geqslant 0 hk = v < 1\mathop {\sup }\limits_{k \geqslant 0} \eta _k = v . Moreover, the characteristic conditions of the convergence of the modified approximate proximal point algorithm are presented by virtue of the new technique very different from the ones given by He et al. 展开更多
关键词 modified approximate proximal point algorithm maximal monotone operator CONVERGENCE
在线阅读 下载PDF
Application of k-person and k-task maximal efficiency assignment algorithm to water piping repair
6
作者 Su-juan ZHENG Xiu-ming YU Li-qing CAO 《Water Science and Engineering》 EI CAS 2009年第2期98-104,共7页
Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be ... Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified. 展开更多
关键词 graph theory maximal efficiency assignment problem minimal weighted k-matching algorithm intercept graph even alternating path water piping repair
在线阅读 下载PDF
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm 被引量:1
7
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(EM)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(SAR)
在线阅读 下载PDF
Influence Maximization for Cascade Model with Diffusion Decay in Social Networks
8
作者 Zhijian Zhang Hong Wu +2 位作者 Kun Yue Jin Li Weiyi Liu 《国际计算机前沿大会会议论文集》 2016年第1期106-108,共3页
Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated p... Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated probability of node increases with its newly increasing activated neighbors, which also decreases with time. In this paper, we focus on the problem that selects k seeds based on the cascade model with diffusion decay to maximize the spread of influence in social networks. First, we extend the independent cascade model to incorporate the diffusion decay factor, called as the cascade model with diffusion decay and abbreviated as CMDD. Then, we discuss the objective function of maximizing the spread of influence under the CMDD, which is NP-hard. We further prove the monotonicity and submodularity of this objective function. Finally, we use the greedy algorithm to approximate the optimal result with the ration of 1 ? 1/e. 展开更多
关键词 Social networks INFLUENCE maximization Cascade model DIFFUSION DECAY SUBMODULARITY GREEDY algorithm
在线阅读 下载PDF
下行NOMA-PLC系统最优功率分配方法研究 被引量:2
9
作者 曹旺斌 唐宏凯 +2 位作者 谢志远 张志坤 胡正伟 《中国电机工程学报》 北大核心 2025年第3期834-845,I0003,共13页
为提高下行非正交多址接入-电力线通信(non-orthogonal multiple access&power line communication,NOMA-PLC)系统的吞吐量和用户容纳数,考虑在对数正态衰落的PLC信道上引入NOMA技术,并对其功率分配方法进行研究。所述下行NOMA-PLC... 为提高下行非正交多址接入-电力线通信(non-orthogonal multiple access&power line communication,NOMA-PLC)系统的吞吐量和用户容纳数,考虑在对数正态衰落的PLC信道上引入NOMA技术,并对其功率分配方法进行研究。所述下行NOMA-PLC系统中包含多个NOMA集群,每个集群在独立的资源块中运行。通过将系统和速率最大化中的最优功率分配问题等价转化为每个集群最小功耗问题,使每个NOMA集群等效转化为一个虚拟正交多址接入(orthogonal multiple access,OMA)用户,以闭合形式获得用户有效信道增益;提出一种基于快速注水算法的功率分配方案,利用注水算法对和速率最大化问题进行求解,求得全局最优功率分配方案。为验证所提方法的有效性,对提出的功率分配方法进行Monte-Carlo仿真分析,结果表明:相较于传统OMA-PLC系统,所提出的NOMA-PLC功率分配方案在系统中断概率、发送端最小功耗、平均和速率方面性能得到明显提升。 展开更多
关键词 非正交多址 电力线通信 注水算法 功率分配 最大化和速率
原文传递
基于TLF-YOLOv8的堆叠垃圾实例分割算法
10
作者 李利 梁晶 +2 位作者 陈旭东 潘红光 寇发荣 《科学技术与工程》 北大核心 2025年第5期2009-2018,共10页
相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的... 相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的实例分割算法。首先,在数据预处理部分进行特征数据分层,并通过双层图卷积网络(graph convolutions network,GCN)实现双分支特征融合,减弱堆叠情况对被遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。同时,为了解决同类待测物体易混淆的问题,融入了软阈值化非极大值抑制算法和新的交并比算法。最后,根据应用场景和数据集的复杂性,优化了主干网络部分的特征提取模块,并在主干网络部分引入了多尺度注意力机制,有效提高了模型的检测性能。实验使用遮挡垃圾分类实例分割数据集,实验结果表明该方法的平均准确率、交并比阈值为0.5时的平均准确率(AP_(50))、交并比为0.5~0.95时的平均准确率(AP_(50~95))等指标较之前的其他方法更优。相较于原YOLOv8算法,检测AP_(50)提高了7.9%,分割AP_(50)提高了5.4%,具有更好的检测和分割效果。 展开更多
关键词 垃圾堆叠 双层特征解耦融合 YOLOv8算法 软阈值化非极大值抑制 动态非单调聚焦机制 期望最大化注意力
在线阅读 下载PDF
圆锥破碎机衬板剩余寿命预测方法
11
作者 蔡改贫 樊龙辉 +1 位作者 赵鑫 郝书灏 《有色金属(中英文)》 北大核心 2025年第5期855-862,共8页
为得到圆锥破碎机衬板首达时失效定义下的寿命分布,解决传统寿命预测方法预测剩余使用寿命(Remaining Useful Life,RUL)准确性低的问题,基于考虑随机效应的Wiener过程,建立了能够表征圆锥破碎机衬板退化性能的退化模型。首先,采用传感... 为得到圆锥破碎机衬板首达时失效定义下的寿命分布,解决传统寿命预测方法预测剩余使用寿命(Remaining Useful Life,RUL)准确性低的问题,基于考虑随机效应的Wiener过程,建立了能够表征圆锥破碎机衬板退化性能的退化模型。首先,采用传感器测量技术获得圆锥破碎机衬板在720 h内的磨损量变化情况,对圆锥破碎机的衬板的磨损曲线进行拟合。其次,根据圆锥破碎机衬板的磨损变化关系将衬板上不同位置的磨损数据进行维度上的变化,建立新的磨损数据集,对比不同时间段单一数据寿命预测精度的准确性,最后,通过期望最大化(Expectation Maximization,EM)算法预估圆锥破碎机寿命分布函数模型的未知参数,并结合卡尔曼滤波算法将数据集进行融合,对衬板的剩余寿命进行预测。对比了融合预测寿命和未经过融合的单个磨损样本数据集的预测结果以及均方误差,结果表明,卡尔曼滤波融合物理磨损特性后的衬板寿命预测相比于未经过特征融合的单一样本算法的寿命预测结果具有更高的准确性。 展开更多
关键词 圆锥破碎机衬板 剩余使用寿命预测 WIENER过程 期望最大化算法
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
12
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance maximum Likelihood Estimation Expectation-maximization algorithm k-Nearest Neighbor and Mean imputation
在线阅读 下载PDF
考虑状态增量的自适应Wiener过程剩余寿命预测 被引量:1
13
作者 李军星 李文琪 +4 位作者 娄泰山 邱明 王治华 庞晓旭 尹若军 《计算机集成制造系统》 北大核心 2025年第1期306-315,共10页
针对传统自适应Wiener过程剩余寿命预测方法具有相邻两个时刻状态量相同隐含假设的问题,提出一种考虑状态增量的自适应Wiener过程剩余寿命预测方法。首先利用Wiener过程来表征产品性能退化过程,建立具有状态增量的Wiener过程状态空间方... 针对传统自适应Wiener过程剩余寿命预测方法具有相邻两个时刻状态量相同隐含假设的问题,提出一种考虑状态增量的自适应Wiener过程剩余寿命预测方法。首先利用Wiener过程来表征产品性能退化过程,建立具有状态增量的Wiener过程状态空间方程,推导出退化模型参数在线更新解析式;为了充分开发利用同类产品的历史退化数据,提出基于期望最大化(EM)算法的信息融合方法,用以估计状态空间方程参数初始值;其次,利用首达时概念,得到产品剩余寿命的分布函数和点估计。最后,结合红外发光二极管IRLED和关节轴承工程实例对所提方法进行验证,与传统方法相比,所提方法的预测精度分别提高了约40.07%和101.23%。 展开更多
关键词 剩余寿命预测 状态增量 自适应Wiener过程 期望最大化算法 性能退化
在线阅读 下载PDF
AE-EM:一种期望最大化Web入侵检测算法 被引量:1
14
作者 尹兆良 黄于欣 余正涛 《计算机工程与应用》 北大核心 2025年第3期315-325,共11页
现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携... 现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携带的负载信息和流量之间的关联语义信息提取不足,异常检测效果有待提升。提出一种无监督算法,名为注意力扩展期望最大化算法(attention expand expectation-maximization algorithm,AE-EM),该算法提取应用层URL中的攻击负载语义,采用Attention机制混合编码网络层流量结构化数据,训练融合多维特征和关联应用层语义的向量作为算法的输入,使用轻量化期望最大化算法估计高斯混合模型的参数,用于网络安全入侵检测的Web入侵检测场景。通过在基线数据集上使用常用的学习算法和消融实验比较,提出的AE-EM算法在Web入侵检测领域准确率和性能上优于传统算法。 展开更多
关键词 入侵检测 Web攻击检测 注意力机制 EM算法 AE-EM算法
在线阅读 下载PDF
非共享资源约束下的净现值最大化多项目调度优化
15
作者 何华 曹芳芳 +1 位作者 何正文 王能民 《系统管理学报》 北大核心 2025年第5期1281-1294,共14页
本文以净现值最大化为目标,研究非共享资源约束下的多项目调度问题。在该问题中,承包商需先将资源分配给各个独立项目,随后各项目在分配到的资源约束下自主决定进度计划,以实现净现值最大化。首先,阐述非共享资源约束下多项目调度问题... 本文以净现值最大化为目标,研究非共享资源约束下的多项目调度问题。在该问题中,承包商需先将资源分配给各个独立项目,随后各项目在分配到的资源约束下自主决定进度计划,以实现净现值最大化。首先,阐述非共享资源约束下多项目调度问题的现实背景和理论意义,界定研究问题并论证其价值;其次,基于符号定义,构建由上下层子模型构成的多项目调度优化模型,并提炼问题的3条基本性质;再次,结合问题特征设计双模块嵌套式变邻域搜索启发式算法,将问题性质嵌入算法中以提升搜索效率;最后,通过随机生成的标准算例进行大规模计算实验,评估算法绩效,并分析关键参数对目标函数的影响。研究结论表明:在对比的4种算法中,本文提出的变邻域搜索算法求解效率最优;项目净现值随里程碑活动数量、预付款比例、中间支付比例及项目截止日期的增加而上升,随折现率与资源因子的增大而下降。 展开更多
关键词 多项目调度 净现值最大化 优化模型 变邻域算法 非共享资源
在线阅读 下载PDF
基于遗传算法的超图预算影响力最大化方法
16
作者 朱运生 张苏苏 +1 位作者 刘闯 詹秀秀 《指挥与控制学报》 北大核心 2025年第5期600-610,共11页
大规模社交网络的兴起与发展显著改变了信息传播模式,深刻影响了网络节点间的相互作用方式。为了研究超图上的预算影响力最大化问题,提出了多种群遗传算法搜索该问题的最优解。算法采用并行计算框架以提高计算效率。在5个真实超图数据... 大规模社交网络的兴起与发展显著改变了信息传播模式,深刻影响了网络节点间的相互作用方式。为了研究超图上的预算影响力最大化问题,提出了多种群遗传算法搜索该问题的最优解。算法采用并行计算框架以提高计算效率。在5个真实超图数据集上的对比实验中,验证了该算法的有效性和高效性。此外,进一步探索了多种群遗传算法的最佳参数组合,验证了该算法对不同节点代价都具有良好的适应性。 展开更多
关键词 预算影响力最大化 复杂网络 超图 遗传算法
在线阅读 下载PDF
基于遗传算法的低冗余超图影响力最大化
17
作者 王志萍 赵嘉乐 +1 位作者 刘凯 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第2期97-104,共8页
超图中的影响力最大化问题在各个领域都具有广泛的应用。现有的方法或是对节点间影响冗余的考虑不够充分,或是仅考虑单一度量对节点初始排序,这导致无法准确刻画节点的真实传播值。为同时充分考虑节点间的影响冗余和节点的真实传播值,... 超图中的影响力最大化问题在各个领域都具有广泛的应用。现有的方法或是对节点间影响冗余的考虑不够充分,或是仅考虑单一度量对节点初始排序,这导致无法准确刻画节点的真实传播值。为同时充分考虑节点间的影响冗余和节点的真实传播值,本文提出了一种基于遗传算法的低冗余超图影响力最大化方法(LR-HGA),该算法在遗传算法的选择操作和交叉操作中考虑这两点。在6个真实超图网络中,基于超图上定义的SI传播模型进行实验,结果表明,与先进的基准算法相比,该算法得到的种子集整体上具有更广的传播范围。 展开更多
关键词 超图 影响力最大化(IM) 影响冗余 遗传算法(GA)
在线阅读 下载PDF
Beta混合模型结合K-S检验的系统谐波阻抗估计
18
作者 陈一涵 曾成碧 +1 位作者 苗虹 杨小宝 《电力系统及其自动化学报》 北大核心 2025年第6期121-128,共8页
为提高概率分布类方法在系统谐波阻抗估计中的准确性和稳健性,提出Beta混合模型结合柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,K-S)检验的系统谐波阻抗估计方法。首先,基于电力系统等效电路构建系统谐波电流的Beta混合模型,根据最大似... 为提高概率分布类方法在系统谐波阻抗估计中的准确性和稳健性,提出Beta混合模型结合柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,K-S)检验的系统谐波阻抗估计方法。首先,基于电力系统等效电路构建系统谐波电流的Beta混合模型,根据最大似然估计原理建立模型的对数似然函数。其次,采用期望最大算法进行参数估计,通过求解对数似然函数,实现系统谐波阻抗的准确估计。最后,引入K-S检验方法,根据谐波电流数据的实际累积分布和理论累积分布计算检验统计量,检验Beta混合模型的系统谐波电流分布模拟能力。在仿真测试和实例分析中与多种方法进行对比,结果表明本文所提方法能够提高系统谐波阻抗估计的准确性和稳健性。 展开更多
关键词 电能质量 谐波阻抗估计 Beta混合模型 最大似然估计 期望最大算法 柯尔莫可洛夫-斯米洛夫检验
在线阅读 下载PDF
求解多模概率分布Gamma混合模型的半EM算法
19
作者 陈佳琪 何玉林 +1 位作者 成英超 黄哲学 《计算机应用》 北大核心 2025年第7期2153-2161,共9页
期望最大化(EM)算法在混合模型参数估计中发挥着重要作用,然而现有的EM算法在求解Gamma混合模型(GaMM)参数时存在局限性,主要体现在因近似计算导致的低质量参数估计,以及由于大量数值计算造成的计算效率低下问题。为了克服这些局限,并... 期望最大化(EM)算法在混合模型参数估计中发挥着重要作用,然而现有的EM算法在求解Gamma混合模型(GaMM)参数时存在局限性,主要体现在因近似计算导致的低质量参数估计,以及由于大量数值计算造成的计算效率低下问题。为了克服这些局限,并充分利用数据的多模性质,提出一种半EM(Semi-EM)算法求解用于估计多模概率分布的GaMM。首先,通过聚类探测数据的空间分布特性,以初始化GaMM参数,进而更准确地刻画数据的多模性;其次,在EM算法框架的基础上,对于缺乏封闭更新表达式而导致的参数更新困难问题,采用自定义的启发式策略对GaMM形状参数进行更新,使它们朝着最大化对数似然值的方向逐步调整,同时以封闭形式更新其他参数。经过一系列具有说服力的实验,验证了Semi-EM算法的可行性、合理性和有效性。实验结果表明,Semi-EM算法在精确估计多模概率分布方面优于对比的4种算法,具有更低的误差指标以及更高的对数似然值,表明该算法能提供更准确的模型参数估计,从而更精确地刻画数据的多模性质。 展开更多
关键词 多模概率密度函数 Gamma混合模型 期望最大化算法 聚类 对数似然函数
在线阅读 下载PDF
基于改进神经网络算法的大规模路网交通流短时预测 被引量:2
20
作者 张令涛 《吉林大学学报(信息科学版)》 2025年第2期432-438,共7页
针对大规模路网交通流在短时间内具有高度复杂性以及非线性特征,对交通流短时预测精度有一定影响的问题,提出了基于改进神经网络算法的大规模路网交通流短时预测方法。利用构建大规模路网函数,通过将路段视为路网核心,将道路节点视为相... 针对大规模路网交通流在短时间内具有高度复杂性以及非线性特征,对交通流短时预测精度有一定影响的问题,提出了基于改进神经网络算法的大规模路网交通流短时预测方法。利用构建大规模路网函数,通过将路段视为路网核心,将道路节点视为相应的连接元素实现路网函数优化。以优化后的路网函数为基础,通过K均值算法与EM(Expectation-Maximization)算法结合的方式提取交通流特征。通过遗传算法与Elman神经网络算法相结合的改进方式,对该路网的交通流进行短时预测,得到相关的预测结果。经实验证明,改进的方法单点平均速度预测结果与实际值更为接近,大规模路网交通流短时预测误差较低,预测结果可靠性更高。 展开更多
关键词 神经网络算法 遗传算法 大规模路网 交通流短时预测 特征提取 EM算法
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部