In the process of oil and gas production,reservoir pressure depletion leads to changes in pore pressure and in-situ stress in caprock,which may reactivate closed faults in caprock,break the sealing of caprock,and make...In the process of oil and gas production,reservoir pressure depletion leads to changes in pore pressure and in-situ stress in caprock,which may reactivate closed faults in caprock,break the sealing of caprock,and make depleted oil and gas reservoirs unsuitable for gas storage.In order to effectively evaluate the sealing of faults in caprock above depleted reservoir and provide a basis for a reasonable selection of injection time and location for gas storage,this paper comprehensively considers fault slip potential(FSP)and fault tensile potential(FTP),and establishes a fault sealing evaluation model in caprock above depleted reservoir.The influences of distance of fault from reservoir top,reservoir pressure depletion degree,cap mechanical property,fault occurrence,fault frictional property and in-situ stress anisotropy in caprock on different types of FSP and FTP are analyzed.The results show that for normal faults,reverse faults,and strike-slip faults,FTP increases with reservoir depletion and does not cause tensile failure,among which FTP is the smallest for normal faults.FSP is the key to controlling fault sealing in caprock above depleted reservoir.For reverse faults and strike-slip faults,in the early stage of reservoir depletion,the FsP is larger when the fault is farther away from the top of the reservoir,while normal faults are the opposite.When the normal fault is closer to the top of the reservoir,the cap poisson ratio is smaller,the Biot's coefficient is larger,the internal friction coefficient of the fault is smaller,the inherent shear strength of the fault is smaller,σH/σv is smaller,σh/σv is smaller,45°<β<75°,α=0° or α=180°,the FSP is larger with the reservoir depletion,and the shear failure of the fault is the most likely.At this time,the reservoir pressure should be strictly controlled not to be too small,so that it can be suitable for the construction of gas storage.Under other conditions,the possibility of shear failure of the caprock is less.For reverse faults and strike-slip faults,when is smaller,the FSP decreases first and then increases with reservoir depletion.Although the possibility of shear failure decreases in the initial stage of reservoir depletion,it increases in the later stage.The research results can provide a theoretical basis for the reconstruction of underground gas storage.展开更多
In this study,a comprehensive rolling mill vibration test program was designed,including specific test conditions and a test system.The analysis of measured signals reveals the vibration response characteristics and t...In this study,a comprehensive rolling mill vibration test program was designed,including specific test conditions and a test system.The analysis of measured signals reveals the vibration response characteristics and their evolution at different gauge points in the finishing mill.This is particularly evident during abnormal rolling,where the signals highlight the characteristics of abnormal responses and vibration intensities.Abnormal vibrations during the rolling process mainly occur when the strip thickness is less than 2.5 mm,and at the rolling speed-up stage,the strong abnormal vibration occurs at each measuring point on the F2 transmission side.The maximum vibration intensity of the backup roll’s bearing seat is 17 mm/s.As the rolling progresses,the stress on the bolts changes.The strip thickness is negatively correlated with the peak values of bite and tail-flick impacts.The vibration characteristics vary with the strip thickness and the process state.展开更多
In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong...In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
In the light of the localized progressive damage model,the evolution law of cohesive and frictional strength with irreversible strains was determined.Then,the location and the extent of the excavation disturbed zone i...In the light of the localized progressive damage model,the evolution law of cohesive and frictional strength with irreversible strains was determined.Then,the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law.The theoretical result is close to the result of in-situ test.The strength evolution law excels the elastic-perfectly plastic model and elasto-brittle plastic model in which the cohesive and frictional strength are mobilized simultaneously.The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law.展开更多
To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linea...To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.展开更多
The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground ...The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.展开更多
As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrate...As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.展开更多
For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element an...For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.展开更多
In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of th...In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of the symbolic anthropology.There are three paths in the construction and evolution of geographic names in Southwest China—Ethnic information,sacred systems,and local representation,which have been rewritten,masked,and reconstructed over the years.As a result,the system of geographical names is gradually formed and integrated into local memory through space building,culture filling,and so on,affecting and influencing local group identity and cognitive concept.展开更多
We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,...We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.展开更多
A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(...A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.展开更多
In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolut...In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolution process of tensile fractures in coal mining areas. The results showed that after the coal in the mining area was mined, the mining area underwent obvious movement and deformation and forms tensile fractures. As the min-ing working face was advanced, the tensile fractures underwent the dynamic process of generation, development and closure. The changing curves of density of tensile fractures with the increase of mining length of the working face liked a ladder (it increased slowly and then rapidly) and then had two peaks (the second peak was higher than the first peak).展开更多
The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectros...The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
According to the principle of damage mechanics, the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular ...According to the principle of damage mechanics, the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent, and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained. The damage threshold of nodular cast iron increases with nodularity, but it is below the yield strength, which provides reference significance to the design of machinery structure and the choice of materials. The critical damage variable is not related to the nodularity, which is about 0 060-0 068.展开更多
According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular c...According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.展开更多
Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in pa...Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in part on realistic modeling and observation of the disaster process,as well as the identification and examination of the underlying mechanisms.Based on the geological conditions and the historical records of the Xinping Tunnel on the China–Laos Railway,an engineering geological model of the water-and-mud inrush was established.A physical model test that accurately reproduced water-and-mud inrush during tunnel excavation in sandstone and slate interbedded strata was also carried out.Then,testing was conducted that examined the stress and strain,seepage pressure,and high-leakage flow of the surrounding rock.The results indicated that the water-and-mud inrush proceeded through three stages:seepage stage,high-leakage flow stage,and attenuation stage.In essence,the disaster was a catastrophic process,during which the water-resistant stratum was reduced to a critical safety thickness,a water-inrush channel formed,and the water-resistant stratum gradually failed under the influence of excavation unloading and in situ stress–seepage coupling.Parameters such as the stress and strain,seepage pressure,and flow of the surrounding rock had evident stage-related features during water-and-mud inrush,and their variation indicated the formation,development,and evolution of the disaster.As the tunnel face advanced,the trend of the stress–strain curve of the surrounding rock shifted from sluggish to rapid in its speed of increase.The characteristics of strain energy density revealed the erosion and weakening effect of groundwater on the surrounding rock.The seepage pressure and the thickness of the water-resistant stratum had a positive linear relationship,and the flow and thickness a negative linear relationship.There was a pivotal point at which the seepage pressure changed from high to low and the flow shifted from low to high.The thickness of the water-resistant stratum corresponding to the pivotal point was deemed the critical safety thickness.展开更多
We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also ...We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.展开更多
To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of ...To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.展开更多
基金National Natural Science Foundation of China(52074224)Key Research and Development Program of Shaanxi Province(2023-YBGY-312).
文摘In the process of oil and gas production,reservoir pressure depletion leads to changes in pore pressure and in-situ stress in caprock,which may reactivate closed faults in caprock,break the sealing of caprock,and make depleted oil and gas reservoirs unsuitable for gas storage.In order to effectively evaluate the sealing of faults in caprock above depleted reservoir and provide a basis for a reasonable selection of injection time and location for gas storage,this paper comprehensively considers fault slip potential(FSP)and fault tensile potential(FTP),and establishes a fault sealing evaluation model in caprock above depleted reservoir.The influences of distance of fault from reservoir top,reservoir pressure depletion degree,cap mechanical property,fault occurrence,fault frictional property and in-situ stress anisotropy in caprock on different types of FSP and FTP are analyzed.The results show that for normal faults,reverse faults,and strike-slip faults,FTP increases with reservoir depletion and does not cause tensile failure,among which FTP is the smallest for normal faults.FSP is the key to controlling fault sealing in caprock above depleted reservoir.For reverse faults and strike-slip faults,in the early stage of reservoir depletion,the FsP is larger when the fault is farther away from the top of the reservoir,while normal faults are the opposite.When the normal fault is closer to the top of the reservoir,the cap poisson ratio is smaller,the Biot's coefficient is larger,the internal friction coefficient of the fault is smaller,the inherent shear strength of the fault is smaller,σH/σv is smaller,σh/σv is smaller,45°<β<75°,α=0° or α=180°,the FSP is larger with the reservoir depletion,and the shear failure of the fault is the most likely.At this time,the reservoir pressure should be strictly controlled not to be too small,so that it can be suitable for the construction of gas storage.Under other conditions,the possibility of shear failure of the caprock is less.For reverse faults and strike-slip faults,when is smaller,the FSP decreases first and then increases with reservoir depletion.Although the possibility of shear failure decreases in the initial stage of reservoir depletion,it increases in the later stage.The research results can provide a theoretical basis for the reconstruction of underground gas storage.
文摘In this study,a comprehensive rolling mill vibration test program was designed,including specific test conditions and a test system.The analysis of measured signals reveals the vibration response characteristics and their evolution at different gauge points in the finishing mill.This is particularly evident during abnormal rolling,where the signals highlight the characteristics of abnormal responses and vibration intensities.Abnormal vibrations during the rolling process mainly occur when the strip thickness is less than 2.5 mm,and at the rolling speed-up stage,the strong abnormal vibration occurs at each measuring point on the F2 transmission side.The maximum vibration intensity of the backup roll’s bearing seat is 17 mm/s.As the rolling progresses,the stress on the bolts changes.The strip thickness is negatively correlated with the peak values of bite and tail-flick impacts.The vibration characteristics vary with the strip thickness and the process state.
基金supported by the National Natural Science Foundation of China(No.52474092,52074042)National Key Research and Development Program of China(No.2018YFC1504802)。
文摘In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
基金Project(50708034)supported by the National Natural Science Foundation of ChinaProject(20060400263)supported by China Postdoctoral Science FoundationProject(2007RS4031)supported by the Provincial Science and Technology Plan of Hunan,China
文摘In the light of the localized progressive damage model,the evolution law of cohesive and frictional strength with irreversible strains was determined.Then,the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law.The theoretical result is close to the result of in-situ test.The strength evolution law excels the elastic-perfectly plastic model and elasto-brittle plastic model in which the cohesive and frictional strength are mobilized simultaneously.The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law.
基金Project supported by the National Natural Science Foundation of China (No. 51174128), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20123718110007)
文摘To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.
基金This research is supported by the National Natural Science Foundation of China(51874289)and the National Key Research and Development Program of China(2018YFC0604705)and the Fundamental Research Funds for the Central Universities 2018ZDPY05.There is no conflict of interest regarding the publication of this paper.
文摘The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.
文摘As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.
基金Project(200911MS01) supported by the Scientific Research Fund of Guangxi Provincial Education Department, China Project (XBZ100126) supported by the Scientific Research Foundation of Guangxi University, China Project(2009B005) supported by the Teaching Reform Foundation in the New Century Higher Education of Guangxi Province,China
文摘For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.
文摘In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of the symbolic anthropology.There are three paths in the construction and evolution of geographic names in Southwest China—Ethnic information,sacred systems,and local representation,which have been rewritten,masked,and reconstructed over the years.As a result,the system of geographical names is gradually formed and integrated into local memory through space building,culture filling,and so on,affecting and influencing local group identity and cognitive concept.
基金supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant No.gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2019A0688 and KJ2020A0638)。
文摘We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61141007,11047133,and 11175113)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2010GQS0080 and 2010GQW0027)+1 种基金the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ11339)the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University
文摘A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.
文摘In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolution process of tensile fractures in coal mining areas. The results showed that after the coal in the mining area was mined, the mining area underwent obvious movement and deformation and forms tensile fractures. As the min-ing working face was advanced, the tensile fractures underwent the dynamic process of generation, development and closure. The changing curves of density of tensile fractures with the increase of mining length of the working face liked a ladder (it increased slowly and then rapidly) and then had two peaks (the second peak was higher than the first peak).
基金Founded by the National Key Research and Development Program(No.2021YFB3802400)the National Natural Science Foundation of China(No.52161037)the Basic Research Project of Yunnan Province(No.202001AU070112)。
文摘The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
基金Item Sponsored by Scientific and Technological Brainstorm Project for Ninth Five-Year Plan of China(97-225-02-02-11)
文摘According to the principle of damage mechanics, the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent, and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained. The damage threshold of nodular cast iron increases with nodularity, but it is below the yield strength, which provides reference significance to the design of machinery structure and the choice of materials. The critical damage variable is not related to the nodularity, which is about 0 060-0 068.
基金the Education Committee of Hebei for the financial support ( B2003102 )
文摘According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.
基金the National High-Speed Rail United Foundation of China(No.U1934213)。
文摘Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in part on realistic modeling and observation of the disaster process,as well as the identification and examination of the underlying mechanisms.Based on the geological conditions and the historical records of the Xinping Tunnel on the China–Laos Railway,an engineering geological model of the water-and-mud inrush was established.A physical model test that accurately reproduced water-and-mud inrush during tunnel excavation in sandstone and slate interbedded strata was also carried out.Then,testing was conducted that examined the stress and strain,seepage pressure,and high-leakage flow of the surrounding rock.The results indicated that the water-and-mud inrush proceeded through three stages:seepage stage,high-leakage flow stage,and attenuation stage.In essence,the disaster was a catastrophic process,during which the water-resistant stratum was reduced to a critical safety thickness,a water-inrush channel formed,and the water-resistant stratum gradually failed under the influence of excavation unloading and in situ stress–seepage coupling.Parameters such as the stress and strain,seepage pressure,and flow of the surrounding rock had evident stage-related features during water-and-mud inrush,and their variation indicated the formation,development,and evolution of the disaster.As the tunnel face advanced,the trend of the stress–strain curve of the surrounding rock shifted from sluggish to rapid in its speed of increase.The characteristics of strain energy density revealed the erosion and weakening effect of groundwater on the surrounding rock.The seepage pressure and the thickness of the water-resistant stratum had a positive linear relationship,and the flow and thickness a negative linear relationship.There was a pivotal point at which the seepage pressure changed from high to low and the flow shifted from low to high.The thickness of the water-resistant stratum corresponding to the pivotal point was deemed the critical safety thickness.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574647)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A16)the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138)
文摘We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.
基金Project(2014-6121)supported by Fundamental Research Funds for the Central Universities,ChinaProject(51504236)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.