In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- t...In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.展开更多
With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based ont...With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based onthe derived exact solutions, some novel and interesting localized coherent excitations such as embed-solitons are revealedby selecting appropriate boundary conditions and/or initial qualifications.The time evolutional properties of the novellocalized excitation are also briefly investigated.展开更多
Tourism E-commerce in the tourism long-term development of tourism, plays an important industry, as the application function on its own for the role in E-commerce, and the E-commerce tourism site as a tourist carder a...Tourism E-commerce in the tourism long-term development of tourism, plays an important industry, as the application function on its own for the role in E-commerce, and the E-commerce tourism site as a tourist carder and its function determined the functions of tourism E-commerce. Moreover, the evolution of E-commerce and tourism are closely related to the evolution of tourism websites. The evolution of E-commerce can guide our future tourism development.展开更多
Based on the statistical mechanics and technology innovation network, this paper analyzed network evolutional mechanics, and constituted its evolutional model.
This paper is a part of series works for discussing the 'auto-destruction effects' of general nonlinear evolutional equations. The blown-up of Navier-Stokes equation is discussed in references [1, 2]. Some exp...This paper is a part of series works for discussing the 'auto-destruction effects' of general nonlinear evolutional equations. The blown-up of Navier-Stokes equation is discussed in references [1, 2]. Some expansion is made in this paper, and the blown-up of order-1 or 2 models and the 'rebel travelling' of complex model of poly-order are discussed. The results indicate that 'semi-rupture' appears for some models on specific condition: the blown-up appears during the whole evolution. For fluid, however, the weakly-nonlinear model is of more artificiality and there is much room for arguing about the smoothing scheme of the numerical integral on the basis of continuous thinking and so on.展开更多
We will study global properties of evolutional Lotka-Volterra system. We assume that the predatory efficiency is a function of a character of species whose evolution obeys a quantitative genetic model. We will show th...We will study global properties of evolutional Lotka-Volterra system. We assume that the predatory efficiency is a function of a character of species whose evolution obeys a quantitative genetic model. We will show that the structure of a solution is rather different from that of a non-evolutional system. We will analytically show new ecological features of the dynamics.展开更多
A simplified data set with 8°×8° grid system in a region of 32°S--32°N from 1951 to 1979 for the elements of sea surface temperature (SST), zonal wind at sea level (U), sea level pressure (SLP...A simplified data set with 8°×8° grid system in a region of 32°S--32°N from 1951 to 1979 for the elements of sea surface temperature (SST), zonal wind at sea level (U), sea level pressure (SLP) and total cloud amount (CA) is made from the COADS. The oscillation components with periods of 2 years (QBO), 3.5 years (SO) and 5.5 years (FYO) in interannual low-frequency oscillations have been studied by using the methods of extended EOF (EEOF) and lag correlation analysis with the oscillational components of SST in the equator of eastern Pacific as the reference element. In our paper, the relationship between oscilla- tion components and occurrence of El Nino is also investigated.展开更多
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and...A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
This paper constructs a dynamic conflict model that considers Decision Makers'(DMs)evolutional attitude using the option prioritization.The proposed evolutional attitude approach is based on the framework of the G...This paper constructs a dynamic conflict model that considers Decision Makers'(DMs)evolutional attitude using the option prioritization.The proposed evolutional attitude approach is based on the framework of the Graph Model for Conflict Resolution(GMCR).Compared with the existing state-based preference,the option prioritization is a more convenient and efficient approach to analyze larger models with consideration of the evolutional attitude,which exists broadly in the evolutional conflicts in reallife.This study reveals how the evolutional attitude of a DM succeeds in the overall evolution of conflict.The analysis unfolds that DMs change their attitude(s)consequent upon the changes in DMs and options available to them as conflict evolves from one level to the next.The changes in attitude of DMs during dynamic conflict situation have substantial effects on the equilibrium outcomes of a conflict.The proposed evaluation attitude-based approach is employed to analyze the conflict between the Punjab Government(G)and Heritage Campaigner and the Public(P)in Pakistan that appeared due to the inappropriate design,planning,and construction of an urban transport system project in Lahore,Pakistan.The present study demonstrates the modeling procedure of a two-level evolutional attitude-based conflict analysis.The results of the stability analysis reveal that improper(negative)attitude may result in undesirable and unexpected consequences,such as project temporalities and delays.This research provides a foundation for future research in urban project planning that employs strategic ways to avoid disputes caused by DMs'attitudes.展开更多
Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we develop...Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we developed a bacterial type-II toxin-antitoxin-mediated method to manipulate genomic integration of tandem gene repeats in Saccharomyces cerevisiae and further visualised the evolutionary trajectories of gene repeats.We designed a tri-vector system to introduce toxin-antitoxin-driven gene amplification modules.Results:This system delivered multi-copy gene integration in the form of tandem gene repeats spontaneously and independently from toxin-antitoxin-mediated selection.Inducing the toxin(RelE)expressing via a copper(II)-inducible CUP1 promoter successfully drove the in-situ gene amplification of the antitoxin(RelB)module,resulting in~40 copies of a green fluorescence reporter gene per copy of genome.Copy-number changes,copy-number increase and copy-number decrease,and stable maintenance were visualised using the green fluorescence protein and blue chromoprotein AeBlue as reporters.Copy-number increases happened spontaneously and independent on a selection pressure.Increased copy number was quickly enriched through toxin-antitoxin-mediated selection.Conclusion:In summary,the bacterial toxin-antitoxin systems provide a flexible mechanism to manipulate gene copy number in eukaryotic cells and can be exploited for synthetic biology and metabolic engineering applications.展开更多
The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.H...The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders.展开更多
Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philologica...Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.展开更多
Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of...Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.展开更多
This overview has provided an account of evolutional changes of an experience-based traditional medical practice of traditional Chinese medicine(TCM) towards modernisation to keep up with recent advances in analytical...This overview has provided an account of evolutional changes of an experience-based traditional medical practice of traditional Chinese medicine(TCM) towards modernisation to keep up with recent advances in analytical and biomedical sciences, and information technology,which may help readers to understand why applying biomedical research methodology to TCM modernisation, while maintaining the experience-based concepts, principles and heritage of TCM's personalised health and medical approaches in balancing body's functions with physical and mental harmony when facing environmental changes, can contribute to gain global appreciation and acceptance of TCM in healthcare. It is envisaged that such future development and integration with biomedicine-based main-stream medicine(MSM) in practice will provide valuable medical care in the development of future personalised health and medicine as well as TCM product development.展开更多
The complete genome sequences of 11 Drosophila species provide an opportunity to investigate the gene family evolution in closely related species. Drosophila Piwi subfamily, including three members, piwi, Aub and Ago3...The complete genome sequences of 11 Drosophila species provide an opportunity to investigate the gene family evolution in closely related species. Drosophila Piwi subfamily, including three members, piwi, Aub and Ago3, has attracted increasing attention as it participates in the biogenesis of piRNA. Here, we identified 33 Piwi homologs from the genome of 11 Drosophila species. The full-length cDNA sequences ofpiwi and Aub genes were obtained by using New GENSCAN Web Server. The Ago3 homologs were difficult regarding full-length information because they had long introns. The genomic structure of Piwi subfamily genes are highly conserved among diverse Drosophila species. Insect piwi and Aub genes have long first introns. The average length of the first intron is 1 284 bp for piwi and 840 bp for Aub, which is much larger than those of other introns (93 bp for Piwi and 54 bp for Aub). However, this phenomenon is not observed in mammalian piwi genes. We also found that there were abundant repeat sequences in both exons and introns of insect Ago3 genes. Due to recent insertions of long terminal repeat elements in four Drosophila species, part of the third introns exhibit higher conservation than adjacent exons and other introns. An evolutional tree created by Minimum Evolution method indicates that mammalian piwi genes are more closely related to the insect Ago3 Piwi subfamily.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
基金supported by National High Technology Research and Development Program of China under Grant No.2011AA01A104National 973 Program underGrant No. 2013CB329204National Natural Science Foundation of China under Grant No.61100206
文摘In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.
基金the Natural Science Foundation of Zhejiang Province under Grant Nos. Y604106 and Y606181the Foundation of New Century "151 Talent Engineering" of Zhejiang Province+1 种基金the Scientific Research Foundation of Key Discipline of Zhejiang Provincethe Natural Science Foundation of Zhejiang Lishui University under Grant No KZ06006
文摘With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based onthe derived exact solutions, some novel and interesting localized coherent excitations such as embed-solitons are revealedby selecting appropriate boundary conditions and/or initial qualifications.The time evolutional properties of the novellocalized excitation are also briefly investigated.
文摘Tourism E-commerce in the tourism long-term development of tourism, plays an important industry, as the application function on its own for the role in E-commerce, and the E-commerce tourism site as a tourist carder and its function determined the functions of tourism E-commerce. Moreover, the evolution of E-commerce and tourism are closely related to the evolution of tourism websites. The evolution of E-commerce can guide our future tourism development.
文摘Based on the statistical mechanics and technology innovation network, this paper analyzed network evolutional mechanics, and constituted its evolutional model.
文摘This paper is a part of series works for discussing the 'auto-destruction effects' of general nonlinear evolutional equations. The blown-up of Navier-Stokes equation is discussed in references [1, 2]. Some expansion is made in this paper, and the blown-up of order-1 or 2 models and the 'rebel travelling' of complex model of poly-order are discussed. The results indicate that 'semi-rupture' appears for some models on specific condition: the blown-up appears during the whole evolution. For fluid, however, the weakly-nonlinear model is of more artificiality and there is much room for arguing about the smoothing scheme of the numerical integral on the basis of continuous thinking and so on.
文摘We will study global properties of evolutional Lotka-Volterra system. We assume that the predatory efficiency is a function of a character of species whose evolution obeys a quantitative genetic model. We will show that the structure of a solution is rather different from that of a non-evolutional system. We will analytically show new ecological features of the dynamics.
文摘A simplified data set with 8°×8° grid system in a region of 32°S--32°N from 1951 to 1979 for the elements of sea surface temperature (SST), zonal wind at sea level (U), sea level pressure (SLP) and total cloud amount (CA) is made from the COADS. The oscillation components with periods of 2 years (QBO), 3.5 years (SO) and 5.5 years (FYO) in interannual low-frequency oscillations have been studied by using the methods of extended EOF (EEOF) and lag correlation analysis with the oscillational components of SST in the equator of eastern Pacific as the reference element. In our paper, the relationship between oscilla- tion components and occurrence of El Nino is also investigated.
文摘A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
基金the National Natural Science Foundation of China(71471087,71071076,and 61673209).
文摘This paper constructs a dynamic conflict model that considers Decision Makers'(DMs)evolutional attitude using the option prioritization.The proposed evolutional attitude approach is based on the framework of the Graph Model for Conflict Resolution(GMCR).Compared with the existing state-based preference,the option prioritization is a more convenient and efficient approach to analyze larger models with consideration of the evolutional attitude,which exists broadly in the evolutional conflicts in reallife.This study reveals how the evolutional attitude of a DM succeeds in the overall evolution of conflict.The analysis unfolds that DMs change their attitude(s)consequent upon the changes in DMs and options available to them as conflict evolves from one level to the next.The changes in attitude of DMs during dynamic conflict situation have substantial effects on the equilibrium outcomes of a conflict.The proposed evaluation attitude-based approach is employed to analyze the conflict between the Punjab Government(G)and Heritage Campaigner and the Public(P)in Pakistan that appeared due to the inappropriate design,planning,and construction of an urban transport system project in Lahore,Pakistan.The present study demonstrates the modeling procedure of a two-level evolutional attitude-based conflict analysis.The results of the stability analysis reveal that improper(negative)attitude may result in undesirable and unexpected consequences,such as project temporalities and delays.This research provides a foundation for future research in urban project planning that employs strategic ways to avoid disputes caused by DMs'attitudes.
基金supported partially by the Australian Government through the Australian Research Council Centres of Excellence funding scheme(project CE200100029)。
文摘Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we developed a bacterial type-II toxin-antitoxin-mediated method to manipulate genomic integration of tandem gene repeats in Saccharomyces cerevisiae and further visualised the evolutionary trajectories of gene repeats.We designed a tri-vector system to introduce toxin-antitoxin-driven gene amplification modules.Results:This system delivered multi-copy gene integration in the form of tandem gene repeats spontaneously and independently from toxin-antitoxin-mediated selection.Inducing the toxin(RelE)expressing via a copper(II)-inducible CUP1 promoter successfully drove the in-situ gene amplification of the antitoxin(RelB)module,resulting in~40 copies of a green fluorescence reporter gene per copy of genome.Copy-number changes,copy-number increase and copy-number decrease,and stable maintenance were visualised using the green fluorescence protein and blue chromoprotein AeBlue as reporters.Copy-number increases happened spontaneously and independent on a selection pressure.Increased copy number was quickly enriched through toxin-antitoxin-mediated selection.Conclusion:In summary,the bacterial toxin-antitoxin systems provide a flexible mechanism to manipulate gene copy number in eukaryotic cells and can be exploited for synthetic biology and metabolic engineering applications.
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174),to LBFondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618),to LBPRIN2022(grant 2022LB4X3N),to LB。
文摘The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders.
基金supported by The China Ethnic Medicine Association Research Grant(No.2023MY055-81)Science and Technology Program of the Joint Fund of Scientific Research for the Public Hospitals of Inner Mongolia Academy of Medical Sciences(2023GLLHD177,2023GLLH0174)Inner Mongolia Autonomous Region Regional Medical Center for Specialized Care(2025).
文摘Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.
基金supported by Basic Science Research Program(Priority Research Institute)through the NRF of Korea funded by the Ministry of Education(2021R1A6A1A10039823)by the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2020R1A6C101B194)。
文摘Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.
文摘This overview has provided an account of evolutional changes of an experience-based traditional medical practice of traditional Chinese medicine(TCM) towards modernisation to keep up with recent advances in analytical and biomedical sciences, and information technology,which may help readers to understand why applying biomedical research methodology to TCM modernisation, while maintaining the experience-based concepts, principles and heritage of TCM's personalised health and medical approaches in balancing body's functions with physical and mental harmony when facing environmental changes, can contribute to gain global appreciation and acceptance of TCM in healthcare. It is envisaged that such future development and integration with biomedicine-based main-stream medicine(MSM) in practice will provide valuable medical care in the development of future personalised health and medicine as well as TCM product development.
基金Acknowledgments We thank Jin-jun Qian for assistance in constructing the phylogenetic tree. This work was in part supported by the National Natural Science Foundation of China (30174417), Natural Science Foundation of Jiangsu Province (BK2007524) and program of New Century Excellent Talents (NCET) to FL.
文摘The complete genome sequences of 11 Drosophila species provide an opportunity to investigate the gene family evolution in closely related species. Drosophila Piwi subfamily, including three members, piwi, Aub and Ago3, has attracted increasing attention as it participates in the biogenesis of piRNA. Here, we identified 33 Piwi homologs from the genome of 11 Drosophila species. The full-length cDNA sequences ofpiwi and Aub genes were obtained by using New GENSCAN Web Server. The Ago3 homologs were difficult regarding full-length information because they had long introns. The genomic structure of Piwi subfamily genes are highly conserved among diverse Drosophila species. Insect piwi and Aub genes have long first introns. The average length of the first intron is 1 284 bp for piwi and 840 bp for Aub, which is much larger than those of other introns (93 bp for Piwi and 54 bp for Aub). However, this phenomenon is not observed in mammalian piwi genes. We also found that there were abundant repeat sequences in both exons and introns of insect Ago3 genes. Due to recent insertions of long terminal repeat elements in four Drosophila species, part of the third introns exhibit higher conservation than adjacent exons and other introns. An evolutional tree created by Minimum Evolution method indicates that mammalian piwi genes are more closely related to the insect Ago3 Piwi subfamily.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.