期刊文献+
共找到362,887篇文章
< 1 2 250 >
每页显示 20 50 100
Phasmatodea Population Evolution Algorithm Based on Spiral Mechanism and Its Application to Data Clustering
1
作者 Jeng-Shyang Pan Mengfei Zhang +2 位作者 Shu-Chuan Chu Xingsi Xue Václav Snášel 《Computers, Materials & Continua》 2025年第4期475-496,共22页
Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their sim... Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks. 展开更多
关键词 Phasmatodea population evolution algorithm data clustering meta-heuristic algorithm
在线阅读 下载PDF
Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine
2
作者 LI Qingwei FU Can +2 位作者 XUE Wenli WEI Yongqiang SHEN Zhiwen 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期252-261,共10页
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t... To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability. 展开更多
关键词 lithium-ion battery state of health(SOH) extreme learning machine(ELM) differential evolution(DE)algorithm
原文传递
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
3
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 Many-objective optimization problem evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
Multi-Firmware Comparison Based on Evolutionary Algorithm and Trusted Base Point
4
作者 Wenbing Wang Yongwen Liu 《Computers, Materials & Continua》 2025年第7期763-790,共28页
Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi... Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points.We first model the multi-firmware comparison as a multi-sequence matching problem.Then,we propose an adaptation function and a population generation method based on trusted base points.Finally,we apply an evolutionary algorithm to find the optimal result.At the same time,we design the similarity of matching results as an evaluation metric to measure the effect of multi-firmware comparison.The experiments show that the proposed method outperforms Bindiff and the string-based method.Precisely,the similarity between the matching results of the proposed method and Bindiff matching results is 61%,and the similarity between the matching results of the proposed method and the string-based method is 62.8%.By sampling and manual verification,the accuracy of the matching results of the proposed method can be about 66.4%. 展开更多
关键词 Multi-firmware comparison evolutionary algorithm multi-sequence matching binary code comparison
在线阅读 下载PDF
A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems
5
作者 Song Gao Shixin Liu 《Computers, Materials & Continua》 2025年第6期5623-5641,共19页
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s... With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem. 展开更多
关键词 Distributed manufacturing flexible job shop scheduling problem assembly operation co-evolutionary algorithm Q-learning method
在线阅读 下载PDF
Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms:An Extensive Review
6
作者 Siti Ramadhani Lestari Handayani +4 位作者 Theam Foo Ng Sumayyah Dzulkifly Roziana Ariffin Haldi Budiman Shir Li Wang 《Computer Modeling in Engineering & Sciences》 2025年第6期2711-2765,共55页
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati... In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency. 展开更多
关键词 Feature selection(FS) gene expression profile(GEP) cancer classification evolutionary algorithms(EAs) dynamic-length chromosome
暂未订购
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
7
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
8
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
在线阅读 下载PDF
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property 被引量:1
9
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
10
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
P,N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water 被引量:1
11
作者 HAN Yi-meng XIONG Hao +2 位作者 YANG Jia-ying WANG Jian-gan XU Fei 《新型炭材料(中英文)》 北大核心 2025年第1期211-221,共11页
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka... The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds. 展开更多
关键词 Alkaline hydrogen evolution ELECTROCATALYSTS Hollow carbon nanospheres Dual atoms doping Combined effect
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
12
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
The evolution process between the earthquake swarm beneath the Noto Peninsula,central Japan and the 2024 M 7.6 Noto Hanto earthquake sequence 被引量:1
13
作者 Zhigang Peng Xinglin Lei +6 位作者 Qing-Yu Wang Dun Wang Phuc Mach Dongdong Yao Aitaro Kato Kazushige Obara Michel Campillo 《Earthquake Research Advances》 2025年第1期10-21,共12页
Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role... Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock. 展开更多
关键词 EARTHQUAKE BENEATH evolution
在线阅读 下载PDF
Mechanical properties and microstructure evolution of 1800 MPa grade low alloy ultrahigh strength steel during quenching and tempering process 被引量:1
14
作者 Tong Wang Yang-xin Wang +2 位作者 Chun-dong Hu Peng-min Cao Han Dong 《Journal of Iron and Steel Research International》 2025年第6期1691-1700,共10页
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci... The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control. 展开更多
关键词 STRENGTH TOUGHNESS CARBIDE Microstructure evolution mechanism
原文传递
Data-Driven Prediction in Complex Systems of Virus Evolution and Global Warming 被引量:1
15
作者 LUO Liaofu LÜJun 《内蒙古大学学报(自然科学版)》 2025年第1期1-7,共7页
A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(da... A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500. 展开更多
关键词 data-drivenprediction complex system virus evolution global warming
原文传递
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
16
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
(Meta)transcriptomic Insights into the Role of Ticks in Poxvirus Evolution and Transmission:A Multicontinental Analysis 被引量:1
17
作者 Yuxi Wang Jingjing Hu +10 位作者 Jingjing Hou Xiaojie Yuan Weijie Chen Yanjiao Li Qile Gao Yue Pan Shuiping Lu Qi Chen Siru Hu Zhongjun Shao Chenglong Xiong 《Biomedical and Environmental Sciences》 2025年第9期1058-1070,I0001,共14页
Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomi... Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses.Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.Results Fifty-eight poxvirus species,representing two subfamilies and 20 genera,were identified,with 212 poxviral sequences assembled.A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes.These genomic sequences contained fragments originating from rodents,archaea,and arthropods.Conclusion Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses.These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer,gene recombination,and gene mutations,thereby promoting co-existence and co-evolution with their hosts.This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes. 展开更多
关键词 POXVIRUS TICK evolution Horizontal gene transfer Gene recombination Gene regulation
暂未订购
Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing 被引量:1
18
作者 Miaojie Yu Weiwei Zhang +4 位作者 Xueyan Liu Guohui Zhao Jun Du Yongzhen Wu Wei-Hong Zhu 《Green Energy & Environment》 2025年第2期390-398,共9页
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b... Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration. 展开更多
关键词 Polymer photocatalysts NANOPARTICLES Hydrogen evolution Forster resonance energy transfer
在线阅读 下载PDF
Prediction of microstructure evolution of ZK61 alloy during hot spinning by internal state variable model 被引量:2
19
作者 Jin-qi PAN Wen-cong ZHANG +3 位作者 Jian-lei YANG Song-hui WANG Yong WU Huan LI 《Transactions of Nonferrous Metals Society of China》 2025年第1期126-142,共17页
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t... An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process. 展开更多
关键词 internal state variable model hot spinning ZK61 alloy finite element simulation texture evolution
在线阅读 下载PDF
Fluid evolution and fragmentation characteristics under high pressure water jet impact on thermal rock 被引量:1
20
作者 Jianming Shangguan Zhaolong Ge +2 位作者 Qinglin Deng Yuhuai Cui Zhi Yao 《International Journal of Mining Science and Technology》 2025年第3期483-497,共15页
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther... In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project. 展开更多
关键词 Fluid evolution Fragmentation characteristics Fracture process Water jet Thermal rock
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部