In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
Improvements to body-surface physiological monitoring ability including real-time,accuracy and integration,are essential to meet the expansive demands for personal healthcare.As part of this,simultaneous monitoring of...Improvements to body-surface physiological monitoring ability including real-time,accuracy and integration,are essential to meet the expansive demands for personal healthcare.As part of this,simultaneous monitoring of sweat metabolites and body temperature offers an exciting path to maximizing diagnostic precision and minimizing morbidity rates.Herein,we report a high-performance biomarker-temperature sensor made of a single As_(3)Se_(5)Te_(2)chalcogenide glass fiber to monitor physiology evolution on body-surface.The sensor integrates efficient thermal resistance and fiber evanescent wave effects,permitting the independent sensing of temperature and biomarkers with an ultrahigh temperature coefficient of resistance(−5.84%K^(–1)),rapid temperature response(0.3 s)and excellent IR sensing sensitivity.Moreover,by attaching a fiber to the wrist,we demonstrate simultaneous observation of both sweat metabolite(urea and lactate)and temperature changes during exercise.This illuminating sensing method will provide crucial capabilities in physiological monitoring and pave the way for advanced personalized diagnostic.展开更多
Subject Code:E01With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Profs.Ding Yi(丁轶)and Luo Jun(罗俊)from the School of Materials Science and Eng...Subject Code:E01With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Profs.Ding Yi(丁轶)and Luo Jun(罗俊)from the School of Materials Science and Engineering,Tianjin University of Technology and Prof.Liu Limin(刘利民)from Beijing展开更多
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2025C01166)National Natural Science Foundation of China(Grant Nos.62105168,62122039)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23F050006)Ningbo Natural Science Foundation(Grant No.2024J460)sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘Improvements to body-surface physiological monitoring ability including real-time,accuracy and integration,are essential to meet the expansive demands for personal healthcare.As part of this,simultaneous monitoring of sweat metabolites and body temperature offers an exciting path to maximizing diagnostic precision and minimizing morbidity rates.Herein,we report a high-performance biomarker-temperature sensor made of a single As_(3)Se_(5)Te_(2)chalcogenide glass fiber to monitor physiology evolution on body-surface.The sensor integrates efficient thermal resistance and fiber evanescent wave effects,permitting the independent sensing of temperature and biomarkers with an ultrahigh temperature coefficient of resistance(−5.84%K^(–1)),rapid temperature response(0.3 s)and excellent IR sensing sensitivity.Moreover,by attaching a fiber to the wrist,we demonstrate simultaneous observation of both sweat metabolite(urea and lactate)and temperature changes during exercise.This illuminating sensing method will provide crucial capabilities in physiological monitoring and pave the way for advanced personalized diagnostic.
文摘Subject Code:E01With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Profs.Ding Yi(丁轶)and Luo Jun(罗俊)from the School of Materials Science and Engineering,Tianjin University of Technology and Prof.Liu Limin(刘利民)from Beijing