A prototype model of the mean radius flow path of a four-stage, high speed 1 MWe axial steam turbine was optimized by using evolution algorithms, DE (differential evolution) algorithm in this case. Also the cost-ben...A prototype model of the mean radius flow path of a four-stage, high speed 1 MWe axial steam turbine was optimized by using evolution algorithms, DE (differential evolution) algorithm in this case. Also the cost-benefits of the optimization were inspected. The optimization was successfully performed but the accuracy of the optimization was slightly less than hoped when compared to the control modeling executed with the CFD (computational fluid dynamics). The mentioned inaccuracy could have been hardly avoided because of problems with an initial presumption involving semi-empiric calculations and of the uncertainty concerning the absolute areas of qualification of the functions. This kind of algebraic modeling was essential for the success of the optimization because e.g. CFD-calculation could not have been done on each step of the optimization. During the optimization some problems occurred with the adequacy of the computer capacity and with finding a suitable solution that would keep the algorithms within mathematically allowable boundaries but would not restrict the progress of the opti- mization too much. The rest of the problems were due to the novelty of the application and problems with pre- ciseness when handling the areas of qualification of the functions. Although the accuracy of the optimization re- suits was not exactly in accordance with the objective, they did have a favorable effect on the designing of the turbine. The optimization executed with the help of the DE-algorithm got at least about 3.5 % more power out of the turbine which means about 150 000 ε cost-benefit per turbine in the form of additional electricity capacity.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their sim...Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks.展开更多
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t...To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategi...The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the r...Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC...In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays.展开更多
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem wi...A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint mode...Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint model and three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with weak planes,but conventional methods have certain problems,such as a large number of parameters and large time consumption.To solve the problems,this study combines the orthogonal design,Gaussian process(GP)regression,and difference evolution(DE)optimization,and it constructs the parameters identification method of the jointed surrounding rock.The calculation process of parameters identification of a tunnel jointed surrounding rock based on the GP optimized by the DE includes the following steps.First,a three-dimensional numerical simulation based on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing schemes,where the model input consists of jointed rock parameters and model output is the information on the surrounding rock displacement and stress.Then,the GP regress model optimized by DE is trained by the data samples.Finally,the GP model is integrated into the DE algorithm,and the absolute differences in the displacement and stress between calculated and monitored values are used as the objective function,while the parameters of the jointed surrounding rock are used as variables and identified.The proposed method is verified by the experiments with a joint rock surface in the Dadongshan tunnel,which is located in Dalian,China.The obtained calculation and analysis results are as follows:CR=0.9,F=0.6,NP=100,and the difference strategy DE/Best/1 is recommended.The results of the back analysis are compared with the field monitored values,and the relative error is 4.58%,which is satisfactory.The algorithm influencing factors are also discussed,and it is found that the local correlation coefficientσf and noise standard deviationσn affected the prediction accuracy of the GP model.The results show that the proposed method is feasible and can achieve high identification precision.The study provides an effective reference for parameter identification of jointed surrounding rock in a tunnel.展开更多
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam...A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.展开更多
The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is r...The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
In recent years,with the increasing demand for social production,engineering design problems have gradually become more and more complex.Many novel and well-performing meta-heuristic algorithms have been studied and d...In recent years,with the increasing demand for social production,engineering design problems have gradually become more and more complex.Many novel and well-performing meta-heuristic algorithms have been studied and developed to cope with this problem.Among them,the Spherical Evolutionary Algorithm(SE)is one of the classical representative methods that proposed in recent years with admirable optimization performance.However,it tends to stagnate prematurely to local optima in solving some specific problems.Therefore,this paper proposes an SE variant integrating the Cross-search Mutation(CSM)and Gaussian Backbone Strategy(GBS),called CGSE.In this study,the CSM can enhance its social learning ability,which strengthens the utilization rate of SE on effective information;the GBS cooperates with the original rules of SE to further improve the convergence effect of SE.To objectively demonstrate the core advantages of CGSE,this paper designs a series of global optimization experiments based on IEEE CEC2017,and CGSE is used to solve six engineering design problems with constraints.The final experimental results fully showcase that,compared with the existing well-known methods,CGSE has a very significant competitive advantage in global tasks and has certain practical value in real applications.Therefore,the proposed CGSE is a promising and first-rate algorithm with good potential strength in the field of engineering design.展开更多
In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- t...In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.展开更多
基金Financially supported by the Finnish Funding Agency for Technology and Innovation (TEKES)
文摘A prototype model of the mean radius flow path of a four-stage, high speed 1 MWe axial steam turbine was optimized by using evolution algorithms, DE (differential evolution) algorithm in this case. Also the cost-benefits of the optimization were inspected. The optimization was successfully performed but the accuracy of the optimization was slightly less than hoped when compared to the control modeling executed with the CFD (computational fluid dynamics). The mentioned inaccuracy could have been hardly avoided because of problems with an initial presumption involving semi-empiric calculations and of the uncertainty concerning the absolute areas of qualification of the functions. This kind of algebraic modeling was essential for the success of the optimization because e.g. CFD-calculation could not have been done on each step of the optimization. During the optimization some problems occurred with the adequacy of the computer capacity and with finding a suitable solution that would keep the algorithms within mathematically allowable boundaries but would not restrict the progress of the opti- mization too much. The rest of the problems were due to the novelty of the application and problems with pre- ciseness when handling the areas of qualification of the functions. Although the accuracy of the optimization re- suits was not exactly in accordance with the objective, they did have a favorable effect on the designing of the turbine. The optimization executed with the help of the DE-algorithm got at least about 3.5 % more power out of the turbine which means about 150 000 ε cost-benefit per turbine in the form of additional electricity capacity.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.
文摘Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks.
文摘To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 60921001)
文摘The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金the National Natural Science Foundation of China(No.51175321)the Innovation Program of Shanghai Municipal Education Commission(No.12ZZ158)
文摘Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金supported by National Natural Science Foundation of China(Nos.61174140 and 61203016)Ph.D.Programs Foundation of Ministry of Education of China(No.20110161110035)China Postdoctoral Science Foundation Funded Project(No.2013M540628)
文摘In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays.
基金provided by grants from the National Basic Research Program of China (Grant No. 2006CB400503)LASG Free Exploration Fund+1 种基金LASG State Key Laboratory Special Fundthe KZCX3-SW-230 of the Chinese Academy of Sciences
文摘A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
基金This work was supported by the National Natural Science Foundation of China(Nos.51678101,52078093)Liaoning Revitalization Talents Program(No.XLYC1905015).
文摘Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint model and three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with weak planes,but conventional methods have certain problems,such as a large number of parameters and large time consumption.To solve the problems,this study combines the orthogonal design,Gaussian process(GP)regression,and difference evolution(DE)optimization,and it constructs the parameters identification method of the jointed surrounding rock.The calculation process of parameters identification of a tunnel jointed surrounding rock based on the GP optimized by the DE includes the following steps.First,a three-dimensional numerical simulation based on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing schemes,where the model input consists of jointed rock parameters and model output is the information on the surrounding rock displacement and stress.Then,the GP regress model optimized by DE is trained by the data samples.Finally,the GP model is integrated into the DE algorithm,and the absolute differences in the displacement and stress between calculated and monitored values are used as the objective function,while the parameters of the jointed surrounding rock are used as variables and identified.The proposed method is verified by the experiments with a joint rock surface in the Dadongshan tunnel,which is located in Dalian,China.The obtained calculation and analysis results are as follows:CR=0.9,F=0.6,NP=100,and the difference strategy DE/Best/1 is recommended.The results of the back analysis are compared with the field monitored values,and the relative error is 4.58%,which is satisfactory.The algorithm influencing factors are also discussed,and it is found that the local correlation coefficientσf and noise standard deviationσn affected the prediction accuracy of the GP model.The results show that the proposed method is feasible and can achieve high identification precision.The study provides an effective reference for parameter identification of jointed surrounding rock in a tunnel.
基金funded jointly by the National Basic Research Program of China(″973″Program)(No2014CB046200)the National Natural Science Foundation of China(No.51506089)+1 种基金the Jiangsu Provincial Natural Science Foundation(No.BK20140059)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.
文摘The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金supported by MRC(MC_PC_17171)Royal Society(RP202G0230)+12 种基金BHF(AA/18/3/34220)Hope Foundation for Cancer Research(RM60G0680)GCRF(P202PF11)Sino-UK Industrial Fund(RP202G0289)LIAS(P202ED10,P202RE969)Data Science Enhancement Fund(P202RE237)Fight for Sight(24NN201)Sino-UK Education Fund(OP202006)BBSRC(RM32G0178B8)Natural Science Foundation of Zhejiang Province(LZ22F020005)National Natural Science Foundation of China(62076185)The 18th batch of innovative and entrepreneurial talent funding projects in Jilin Province(No.49)Natural Science Foundation of Jilin Province(YDZJ202201ZYTS567).
文摘In recent years,with the increasing demand for social production,engineering design problems have gradually become more and more complex.Many novel and well-performing meta-heuristic algorithms have been studied and developed to cope with this problem.Among them,the Spherical Evolutionary Algorithm(SE)is one of the classical representative methods that proposed in recent years with admirable optimization performance.However,it tends to stagnate prematurely to local optima in solving some specific problems.Therefore,this paper proposes an SE variant integrating the Cross-search Mutation(CSM)and Gaussian Backbone Strategy(GBS),called CGSE.In this study,the CSM can enhance its social learning ability,which strengthens the utilization rate of SE on effective information;the GBS cooperates with the original rules of SE to further improve the convergence effect of SE.To objectively demonstrate the core advantages of CGSE,this paper designs a series of global optimization experiments based on IEEE CEC2017,and CGSE is used to solve six engineering design problems with constraints.The final experimental results fully showcase that,compared with the existing well-known methods,CGSE has a very significant competitive advantage in global tasks and has certain practical value in real applications.Therefore,the proposed CGSE is a promising and first-rate algorithm with good potential strength in the field of engineering design.
基金supported by National High Technology Research and Development Program of China under Grant No.2011AA01A104National 973 Program underGrant No. 2013CB329204National Natural Science Foundation of China under Grant No.61100206
文摘In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.