期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System
1
作者 Gyrgy GT 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第2期311-322,共12页
The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(... The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(n+1)≥δsupk≤n aj(k)(j=1,...,d,n∈N)for someδ〉0 and a1(+∞)=···=ad(+∞)=+∞.Then,for each integrable function f∈L1(Id),we have the a.e.relation for the Cesaro means limn→∞σαa(n)f=f and for the Riesz means limn→∞σα,γa(n)f=f for any 0〈αj≤1≤γj(j=1,...,d).A straightforward consequence of our result is the so-called cone restricted a.e.convergence of the multidimensional Cesaro and Riesz means of integrable functions,which was proved earlier by Weisz. 展开更多
关键词 Walsh system d-dimensional Fejer and Riesz means SUBSEQUENCE almost everywhereconvergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部