期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Secure Synchronization Control of Markovian Jump Neural Networks Under DoS Attacks with Memory-Based Adaptive Event-Triggered Mechanism
1
作者 Shanshan ZHAO Linhao ZHAO +1 位作者 Shiping WEN Long CHENG 《Artificial Intelligence Science and Engineering》 2025年第1期64-78,共15页
This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-tri... This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples. 展开更多
关键词 Piecewise-homogeneous Markovian process delay neural networks security synchronization control memory-based adaptive eventtriggered mechanism
在线阅读 下载PDF
Decentralized Dynamic Event-Triggered Communication and Active Suspension Control of In-Wheel Motor Driven Electric Vehicles with Dynamic Damping 被引量:15
2
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期971-986,共16页
This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main ob... This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency. 展开更多
关键词 Active suspension control decentralized eventtriggered control dynamic damper dynamic eventtriggered communication in-wheel motor driven electric vehicle
在线阅读 下载PDF
Event-Triggered Asymmetric Bipartite Consensus Tracking for Nonlinear Multi-Agent Systems Based on Model-Free Adaptive Control 被引量:2
3
作者 Jiaqi Liang Xuhui Bu +1 位作者 Lizhi Cui Zhongsheng Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期662-672,共11页
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a... In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol. 展开更多
关键词 Asymmetric bipartite consensus tracking eventtriggered model-free adaptive control(MFAC) nonlinear systems signed digraph
在线阅读 下载PDF
Adaptive Dynamic Event-Triggered Control for Strict-Feedback Nonlinear System with Time-Varying Parameters
4
作者 Yu Liu Yongchao Liu Haiyang Chen 《The International Journal of Intelligent Control and Systems》 2025年第2期115-122,共8页
In this paper,an adaptive dynamic event-triggered asymptotic control scheme is designed for strict-feedback systems with time-varying parameters.The congelation of variables technique is employed to address the time-v... In this paper,an adaptive dynamic event-triggered asymptotic control scheme is designed for strict-feedback systems with time-varying parameters.The congelation of variables technique is employed to address the time-varying parameters in the system.During the controller design,two parameter estimation adaptive laws are constructed.The tuning function is introduced in the design process to avoid over-parameterization.To further conserve communication resources,a dynamic eventtriggered approach is proposed,in which a non-negative variable is introduced to update the threshold parameter dynamically.The global uniform asymptotic stability of the closed-loop system is proven through the Lyapunov stability analysis.The feasibility of the scheme is demonstrated by simulation. 展开更多
关键词 Adaptive control nonlinear system dynamic eventtriggered control time-varying parameter
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部