期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Neural-Network-Based Adaptive Finite-Time Control for a Two-Degree-of-Freedom Helicopter System With an Event-Triggering Mechanism 被引量:1
1
作者 Zhijia Zhao Jian Zhang +2 位作者 Shouyan Chen Wei He Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1754-1765,共12页
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne... Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy. 展开更多
关键词 Adaptive neural-network control event-triggering mechanism(ETM) finite time two-degree-of-freedom helicopter
在线阅读 下载PDF
Formation-Containment Control Using Dynamic Event-Triggering Mechanism for Multi-Agent Systems 被引量:24
2
作者 Amir Amini Amir Asif Arash Mohammadi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1235-1248,共14页
The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizin... The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach. 展开更多
关键词 Co-design convex optimization dynamic event-triggered schemes formation-containment control multi-agent systems
在线阅读 下载PDF
Adaptive Event-Triggering Consensus for Multi-Agent Systems with Linear Time-Varying Dynamics
3
作者 ZHANG Wenbing ABUZAR HUSSEIN MOHAMMED Atitalla +1 位作者 BAO Jiatong LIU Yurong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第5期1700-1718,共19页
In this paper,the authors study the fully distributed event-triggering consensus problem for multi-agent systems with linear time-varying dynamics,where each agent is described by a linear time-varying system.An adapt... In this paper,the authors study the fully distributed event-triggering consensus problem for multi-agent systems with linear time-varying dynamics,where each agent is described by a linear time-varying system.An adaptive event-triggering protocol is proposed for time-varying multi-agent systems under directed graph.Based on the Gramian matrix of linear time-varying systems,the design of control gain is done and sufficient conditions ensuring the consensus of linear time-varying multiagent systems are obtained.It is shown that the coupling strength is closely related to the triggering condition.When it comes to undirected graph,it is shown that the coupling strength is independent on the triggering condition and thus the design procedure is of more freedom than the directed case.In addition,it is also proved that Zeno behaviours can be excluded in the proposed protocols.A numerical example is presented to demonstrate the effectiveness of the theoretical results. 展开更多
关键词 CONSENSUS event-triggering fully distributed control multi-agent systems time-varying systems
原文传递
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
4
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Periodic Event-Triggered Consensus of Stochastic Multiagent Systems Under Switching Topology
5
作者 Boqian LI Linhao ZHAO Shiping WEN 《Artificial Intelligence Science and Engineering》 2025年第2期147-156,共10页
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ... The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods. 展开更多
关键词 cooperative control stochastic systems event-triggered mechanism switching topology
在线阅读 下载PDF
Output feedback control of nonlinear time-delay systems with multiple uncertainties via an event-triggered strategy
6
作者 Weiyong Yu Qi Chen +2 位作者 Hongbing Zhou Xiang An Qiang Liu 《Control Theory and Technology》 2025年第2期321-340,共20页
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses... This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective. 展开更多
关键词 Dynamic gain event-triggered control Input matching uncertainty Nonlinear time-delay systems Output feedback Unknown measurement sensitivity
原文传递
Event-triggered control for a class of large-scale nonlinear systems with neutral delays and unknown backlash-like hysteresis
7
作者 Yiyu Feng Weihao Pan +1 位作者 Yanan Qi Xianfu Zhang 《Control Theory and Technology》 2025年第2期253-265,共13页
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t... This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme. 展开更多
关键词 Large-scale nonlinear systems Neutral delays Unknown backlash-like hysteresis event-triggered control
原文传递
Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems
8
作者 Qinglai Wei Shanshan Jiao +1 位作者 Qi Dong Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期40-53,共14页
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s... This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network(NN) event-triggered control optimal consensus control robust control
在线阅读 下载PDF
Distributed event-triggered collision avoidance coordinated control for QUAVs based on flexible virtual tubes
9
作者 Hongzhen GUO Mou CHEN +1 位作者 Mihai LUNGU Baomin LI 《Chinese Journal of Aeronautics》 2025年第2期339-352,共14页
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un... In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method. 展开更多
关键词 Quadrotor unmanned aerial vehicles Collision avoidance Virtual tubes with flexible boundaries event-triggered mechanism Hysteresis uniform quantizer Distributed coordinated control
原文传递
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
10
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
Distributed performance constraint control for heterogeneous multiagent systems with dynamic event-triggered mechanism
11
作者 Hongzhen GUO Mou CHEN Peng ZHANG 《Chinese Journal of Aeronautics》 2025年第3期124-133,共10页
In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese... In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS. 展开更多
关键词 Heterogeneous multiagent systems Quadrotor unmanned aerial vehicles Unmanned ground vehicles Distributed disturbance observer Appoin ted-timne prescribed performance function event-triggered mechanism
原文传递
Reduced-Order GPIO Based Dynamic Event-Triggered Tracking Control of a Networked One-DOF Link Manipulator Without Velocity Measurement 被引量:2
12
作者 Jiankun Sun Jun Yang Shihua Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期725-734,共10页
In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturban... In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a onedegree of freedom(DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer(GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism(DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach. 展开更多
关键词 DYNAMIC event-triggering mechanism(DETM) external disturbance and system uncertainties NETWORKED robot MANIPULATOR reduced-order generalized proportional-integral observer(GPIO) robust control
在线阅读 下载PDF
Event-Triggered Finite-Time <i>H</i><sub>∞</sub>Control for Switched Stochastic Systems
13
作者 Aiqing Zhang 《Journal of Applied Mathematics and Physics》 2020年第10期2103-2114,共12页
This paper investigates the problem of event-triggered finite-time <i>H</i><sub>∞</sub> control for a class of switched stochastic systems. The main objective of this study is to design an eve... This paper investigates the problem of event-triggered finite-time <i>H</i><sub>∞</sub> control for a class of switched stochastic systems. The main objective of this study is to design an event-triggered state feedback <i>H</i><sub>∞</sub> controller such that the resulting closed-loop system is finite-time bounded and satisfies a prescribed <i>H</i><sub>∞</sub> level in some given finite-time interval. Based on stochastic differential equations theory and average dwell time approach, sufficient conditions are derived to ensure the finite-time stochastic stability with the prescribed <i>H</i><sub>∞</sub> performance for the relevant closed-loop system by employing the linear matrix inequality technique. Finally, the desired state feedback <i>H</i><sub>∞</sub> controller gain matrices can be expressed in an explicit form. 展开更多
关键词 Average Dwell Time event-triggering Scheme Finite-Time Stochastic Stability (FTSS) Linear Matrix Inequalities (LMIS) Switched Stochastic Systems
在线阅读 下载PDF
Dynamic Event-triggered Control and Estimation: A Survey 被引量:18
14
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《International Journal of Automation and computing》 EI CSCD 2021年第6期857-886,共30页
The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e... The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research. 展开更多
关键词 Networked systems dynamic event-triggered control dynamic event-triggered estimation dynamic event-triggered mechanisms vehicle active suspension system water distribution and supply system
原文传递
Dynamic Event-Triggered Scheduling and Platooning Control Co-Design for Automated Vehicles Over Vehicular Ad-Hoc Networks 被引量:35
15
作者 Xiaohua Ge Shunyuan Xiao +2 位作者 Qing-Long Han Xian-Ming Zhang Derui Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期31-46,共16页
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr... This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency. 展开更多
关键词 Automated vehicles dynamic event-triggered communication information flow topology platooning control vehicular ad-hoc networks(VANETs)
在线阅读 下载PDF
Consensus Control of Multi-Agent Systems Using Fault-Estimation-in-the-Loop:Dynamic Event-Triggered Case 被引量:23
16
作者 Yamei Ju Derui Ding +2 位作者 Xiao He Qing-Long Han Guoliang Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1440-1451,共12页
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl... The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework. 展开更多
关键词 Consensus control dynamic event-triggered protocol(DETP) fault compensation(FC) fault estimation multi-agent systems(MASs)
在线阅读 下载PDF
Multi-UAV coordination control by chaotic grey wolf optimization based distributed MPC with event-triggered strategy 被引量:15
17
作者 Yingxun WANG Tian ZHANG +2 位作者 Zhihao CAI Jiang ZHAO Kun WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第11期2877-2897,共21页
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and... The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method. 展开更多
关键词 Chaotic Grey Wolf Optimization(CGWO) Coordination control Distributed Model Predictive Control(MPC) event-triggered strategy MULTI-UAV
原文传递
Periodic event-triggered formation control for multi-UAV systems with collision avoidance 被引量:13
18
作者 Tong WU Jie WANG Bailing TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期193-203,共11页
In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)m... In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol. 展开更多
关键词 Collision avoidance Distributed formation control event-triggered strategy Leader-follower method Multiple Unmanned Aerial Vehicles(UAVs)
原文传递
Data-Driven Control of Distributed Event-Triggered Network Systems 被引量:9
19
作者 Xin Wang Jian Sun +2 位作者 Gang Wang Frank Allgower Jie Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期351-364,共14页
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge... The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure. 展开更多
关键词 Data-driven control distributed event-triggered network system(ETS) linear matrix inequalitie(LMI) looped-functional STABILITY
在线阅读 下载PDF
Adaptive event-triggered distributed optimal guidance design via adaptive dynamic programming 被引量:7
20
作者 Teng LONG Yan CAO +1 位作者 Jingliang SUN Guangtong XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期113-127,共15页
In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is propos... In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Adaptive dynamic programming Distributed control event-triggered Guidance and control Multi-agent system
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部