In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way ...This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.展开更多
In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for ea...In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for each agent are designed, where the adaptive function is only dependent on its own event time instants. A sufficient condition on consensus is proposed, which shows that the adaptive event-based method presented in this paper not only can reduce the communication among neighboring agents, but also can determine the event time instants for each agent without using the global information. Furthermore, the Zeno-behavior for the concerned closed-loop system is excluded. Finally, an example is presented to ilhistratc the effectiveness of the obtained theoretical results.展开更多
Constructive nonlinear control design has undergone rapid and significant progress over the last three decades. In this paper, a review of recent results in this important field is presented with a focus on interdisci...Constructive nonlinear control design has undergone rapid and significant progress over the last three decades. In this paper, a review of recent results in this important field is presented with a focus on interdisciplinary topics at the interface of control,computing and communications. In particular, it is shown that the nonlinear small-gain theory provides a unified framework for solving problems of quantized feedback stabilization and event-triggered control for nonlinear systems. Some open questions in quantized and networked nonlinear control systems are discussed.展开更多
We deal with event-triggered Hoo controller design for discrete-time piecewise-affine systems subject to actuator saturation.By considering saturation information,a novel event-triggered strategy is proposed to conser...We deal with event-triggered Hoo controller design for discrete-time piecewise-affine systems subject to actuator saturation.By considering saturation information,a novel event-triggered strategy is proposed to conserve communication resources.A linear matrix inequality based condition is derived based on a piecewise Lyapunov function.This condition guarantees the stability of the closed-loop system with a certain Hoo performance index and reduces the number of transmitted signals.Numerical examples are given to show the efficiency of our method.展开更多
An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic progra...An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regiona...In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regional controllability is more adapted to systems described by dynamic systems.Regional controllability results in a strategic area were established for vibrating plates by the Hilbertian Uniqueness Method.展开更多
The rise of the Internet and identity authentication systems has brought convenience to people's lives but has also introduced the potential risk of privacy leaks.Existing biometric authentication systems based on...The rise of the Internet and identity authentication systems has brought convenience to people's lives but has also introduced the potential risk of privacy leaks.Existing biometric authentication systems based on explicit and static features bear the risk of being attacked by mimicked data.This work proposes a highly efficient biometric authentication system based on transient eye blink signals that are precisely captured by a neuromorphic vision sensor with microsecond-level temporal resolution.The neuromorphic vision sensor only transmits the local pixel-level changes induced by the eye blinks when they occur,which leads to advantageous characteristics such as an ultra-low latency response.We first propose a set of effective biometric features describing the motion,speed,energy and frequency signal of eye blinks based on the microsecond temporal resolution of event densities.We then train the ensemble model and non-ensemble model with our Neuro Biometric dataset for biometrics authentication.The experiments show that our system is able to identify and verify the subjects with the ensemble model at an accuracy of 0.948 and with the non-ensemble model at an accuracy of 0.925.The low false positive rates(about 0.002)and the highly dynamic features are not only hard to reproduce but also avoid recording visible characteristics of a user's appearance.The proposed system sheds light on a new path towards safer authentication using neuromorphic vision sensors.展开更多
Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it ...Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it often observes states at a very high frequency.This inefficiency has motivated the idea of event-based method,which leverages the evolution dynamics in question and makes observations only when some rules are triggered(i.e.,only when certain conditions hold).This paper initiates the investigation of using the event-based method to estimate the equilibrium in the new application domain of cybersecurity,where equilibrium is an important metric that has no closed-form solutions.More specifically,the paper presents an event-based method for estimating cybersecurity equilibrium in the preventive and reactive cyber defense dynamics,which has been proven globally convergent.The presented study proves that the estimated equilibrium from our trigger rule i)indeed converges to the equilibrium of the dynamics and ii)is Zeno-free,which assures the usefulness of the event-based method.Numerical examples show that the event-based method can reduce 98%of the observation cost incurred by the periodic method.In order to use the event-based method in practice,this paper investigates how to bridge the gap between i)the continuous state in the dynamics model,which is dubbed probability-state because it measures the probability that a node is in the secure or compromised state,and ii)the discrete state that is often encountered in practice,dubbed sample-state because it is sampled from some nodes.This bridge may be of independent value because probability-state models have been widely used to approximate exponentially-many discrete state systems.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Purpose–This study aims to propose a cooperative adhesion control method for trains with multiple motors electric locomotives.The method is intended to optimize the output torque of each motor,maximize the utilizatio...Purpose–This study aims to propose a cooperative adhesion control method for trains with multiple motors electric locomotives.The method is intended to optimize the output torque of each motor,maximize the utilization of train adhesion within the total torque command,reduce the train skidding/sliding phenomenon and achieve optimal adhesion utilization for each axle,thus realizing the optimal allocation of the multi-motor electric locomotives.Design/methodology/approach–In this study,a model predictive control(MPC)-based cooperative maximum adhesion tracking control method for multi-motor electric locomotives is presented.Firstly,train traction system with multiple motors is constructed in accordance with Newton’s second law.These equations include the train dynamics equations,the axle dynamics equations,and the wheel-rail adhesion coefficient equations.Then,a new MPC-based multi-axle adhesion co-optimization method is put forward.This method calculates the optimal output torque through real-time iteration based on the known reference slip speed to achieve multi-axle co-optimization under different circumstances.Findings–This paper presents a MPC system designed for the cooperative control of multi-axle adhesion.The results indicate that the proposed control system is able to optimize the adhesion of multiple axles under numerous different conditions and achieve the optimal power distribution based on the reduction of train skidding/sliding.Originality/value–This study presents a novel cooperative adhesion tracking control scheme.It is designed for multi-motor electric locomotives,which has rarely been studied before.And simulations are carried out in different conditions,including variable surfaces and motor failing.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham...This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.展开更多
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us...Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.展开更多
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.
基金National Natural Science Foundation of China(Nos.U22B2040 and 62233003)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb12)。
文摘This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.
基金supported partly by the National Natural Science Foundation of China under Grant Nos.61673080 and 61403314partly by Training Programme Foundation for the Talents of Higher Education by Chongqing Education Commissionpartly by Innovation Team Project of Chongqing Education Committee under Grant No.CXTDX201601019
文摘In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for each agent are designed, where the adaptive function is only dependent on its own event time instants. A sufficient condition on consensus is proposed, which shows that the adaptive event-based method presented in this paper not only can reduce the communication among neighboring agents, but also can determine the event time instants for each agent without using the global information. Furthermore, the Zeno-behavior for the concerned closed-loop system is excluded. Finally, an example is presented to ilhistratc the effectiveness of the obtained theoretical results.
基金supported by National Natural Science Foundation of China(No.61374042)the Fundamental Research Funds for the Central Universities in China(No.N130108001)
文摘Constructive nonlinear control design has undergone rapid and significant progress over the last three decades. In this paper, a review of recent results in this important field is presented with a focus on interdisciplinary topics at the interface of control,computing and communications. In particular, it is shown that the nonlinear small-gain theory provides a unified framework for solving problems of quantized feedback stabilization and event-triggered control for nonlinear systems. Some open questions in quantized and networked nonlinear control systems are discussed.
基金Project supported by the National Natural Science Foundation of China(No.61807016)the China Postdoctoral Science Foundation(No.2018M642160)+1 种基金the Jiangsu Province Postdoctoral Fund of China(No.1701095B)the Natural Science Foundation of Jiangsu Province,China(No.BK20201340)。
文摘We deal with event-triggered Hoo controller design for discrete-time piecewise-affine systems subject to actuator saturation.By considering saturation information,a novel event-triggered strategy is proposed to conserve communication resources.A linear matrix inequality based condition is derived based on a piecewise Lyapunov function.This condition guarantees the stability of the closed-loop system with a certain Hoo performance index and reduces the number of transmitted signals.Numerical examples are given to show the efficiency of our method.
基金supported in part by the National Natural Science Foundation of China(62033003,62003093,62373113,U23A20341,U21A20522)the Natural Science Foundation of Guangdong Province,China(2023A1515011527,2022A1515011506).
文摘An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regional controllability is more adapted to systems described by dynamic systems.Regional controllability results in a strategic area were established for vibrating plates by the Hilbertian Uniqueness Method.
基金supported by the National Natural Science Foundation of China(61906138)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2018AAA0102900)+2 种基金the Shanghai Automotive Industry Sci-Tech Development Program(1838)the European Union’s Horizon 2020 Research and Innovation Program(785907)the Shanghai AI Innovation Development Program 2018。
文摘The rise of the Internet and identity authentication systems has brought convenience to people's lives but has also introduced the potential risk of privacy leaks.Existing biometric authentication systems based on explicit and static features bear the risk of being attacked by mimicked data.This work proposes a highly efficient biometric authentication system based on transient eye blink signals that are precisely captured by a neuromorphic vision sensor with microsecond-level temporal resolution.The neuromorphic vision sensor only transmits the local pixel-level changes induced by the eye blinks when they occur,which leads to advantageous characteristics such as an ultra-low latency response.We first propose a set of effective biometric features describing the motion,speed,energy and frequency signal of eye blinks based on the microsecond temporal resolution of event densities.We then train the ensemble model and non-ensemble model with our Neuro Biometric dataset for biometrics authentication.The experiments show that our system is able to identify and verify the subjects with the ensemble model at an accuracy of 0.948 and with the non-ensemble model at an accuracy of 0.925.The low false positive rates(about 0.002)and the highly dynamic features are not only hard to reproduce but also avoid recording visible characteristics of a user's appearance.The proposed system sheds light on a new path towards safer authentication using neuromorphic vision sensors.
基金supported in part by the National Natural Sciences Foundation of China(62072111)。
文摘Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it often observes states at a very high frequency.This inefficiency has motivated the idea of event-based method,which leverages the evolution dynamics in question and makes observations only when some rules are triggered(i.e.,only when certain conditions hold).This paper initiates the investigation of using the event-based method to estimate the equilibrium in the new application domain of cybersecurity,where equilibrium is an important metric that has no closed-form solutions.More specifically,the paper presents an event-based method for estimating cybersecurity equilibrium in the preventive and reactive cyber defense dynamics,which has been proven globally convergent.The presented study proves that the estimated equilibrium from our trigger rule i)indeed converges to the equilibrium of the dynamics and ii)is Zeno-free,which assures the usefulness of the event-based method.Numerical examples show that the event-based method can reduce 98%of the observation cost incurred by the periodic method.In order to use the event-based method in practice,this paper investigates how to bridge the gap between i)the continuous state in the dynamics model,which is dubbed probability-state because it measures the probability that a node is in the secure or compromised state,and ii)the discrete state that is often encountered in practice,dubbed sample-state because it is sampled from some nodes.This bridge may be of independent value because probability-state models have been widely used to approximate exponentially-many discrete state systems.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by Scientific Research Projects of China Association of Metros(CAMET-KY-2022039)State Key Laboratory of Traction and Control System of EMU and Locomotive(2023YJ386).
文摘Purpose–This study aims to propose a cooperative adhesion control method for trains with multiple motors electric locomotives.The method is intended to optimize the output torque of each motor,maximize the utilization of train adhesion within the total torque command,reduce the train skidding/sliding phenomenon and achieve optimal adhesion utilization for each axle,thus realizing the optimal allocation of the multi-motor electric locomotives.Design/methodology/approach–In this study,a model predictive control(MPC)-based cooperative maximum adhesion tracking control method for multi-motor electric locomotives is presented.Firstly,train traction system with multiple motors is constructed in accordance with Newton’s second law.These equations include the train dynamics equations,the axle dynamics equations,and the wheel-rail adhesion coefficient equations.Then,a new MPC-based multi-axle adhesion co-optimization method is put forward.This method calculates the optimal output torque through real-time iteration based on the known reference slip speed to achieve multi-axle co-optimization under different circumstances.Findings–This paper presents a MPC system designed for the cooperative control of multi-axle adhesion.The results indicate that the proposed control system is able to optimize the adhesion of multiple axles under numerous different conditions and achieve the optimal power distribution based on the reduction of train skidding/sliding.Originality/value–This study presents a novel cooperative adhesion tracking control scheme.It is designed for multi-motor electric locomotives,which has rarely been studied before.And simulations are carried out in different conditions,including variable surfaces and motor failing.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金financially supported by Sichuan Science and Technology Program(Grant No.2023NSFSC1980).
文摘This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.
基金supported in part by the National Natural Science Foundation of China(61873348,6230 3266,62273200)JSPS(Japan Society for the Promotion of Science) KAKENHI(22H03998,23K25252)
文摘Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.