Enhancing wastewater treatment efficiency through innovative technologies is paramount in addressing global environmental challenges.This study explores utilizing stereoscopic hydrogel evaporators combined with renewa...Enhancing wastewater treatment efficiency through innovative technologies is paramount in addressing global environmental challenges.This study explores utilizing stereoscopic hydrogel evaporators combined with renewable energy sources to optimize wastewater treatment processes.A cross-linked super absorbent polymer(SAP)hydrogel was synthesized using acrylic acid and 2-hydroxyethyl methacrylate monomers and integrated with a light-absorbing carbon membrane to form a solar-assisted evaporator(MSAP).The MSAP achieved a high evaporation rate of 3.08 kg m^(-2)·h^(-1)and a photothermal conversion efficiency of 94.27%.It demonstrated excellent removal efficiency for dye-polluted wastewater,significantly reducing concentrations of pollutants.The MSAP maintained high performance in outdoor conditions,showcasing its potential for real-world applications.This approach,incorporating both solar and wind energy,significantly boosts water evaporation rates and presents a promising,eco-friendly solution for sustainable wastewater treatment within the circular development framework.展开更多
The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this...The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this study proposes an innovative hybrid approach that integrates wavelet neural network(WNN)with chaos analysis.By leveraging the Cross-Correlation(C−C)method,the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN.Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals,advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators.Moreover,this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings.展开更多
Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a n...Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.展开更多
Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a ...Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a fabric-based Janus interracial evaporator is efficiently fabricated on a large scale by integrating an extremely innovative self-designed melt-centrifugal spinning technology with spray coating technology.The prepared fabric-based Janus interfacial evaporator has differential hydrophilicity,uneven surfaces,and channels that allow moisture escape.Benefiting from the excellent photothermai conversion of graphene oxide and the charge transfer actions of titanium dioxide,such a multifunction evaporator can reach a high evaporation rate of 1.72 kg m^(-2)h^(-1)under 1 sun irradiation,a superior antibacterial rate of 99%,excellent photocatalytic degradation,and effective thermoelectric ability simultaneously.Moreover,it also shows fantastic performance in salt resistance,recyclable evaporation,and real desalination,This work demonstrates a high-efficiency,cost-effective,multifunctional,and scalable strategy for high-performance fiber fabrics solar interfacial evaporation.展开更多
The agitated thin-film evaporator(ATFE)plays a crucial role in evaporation and concentration processes.The design of the scraper for processing high-viscosity non-Newtonian fluids in the ATFE is complex.The intricate ...The agitated thin-film evaporator(ATFE)plays a crucial role in evaporation and concentration processes.The design of the scraper for processing high-viscosity non-Newtonian fluids in the ATFE is complex.The intricate scraping action of the scraper introduces gas into the liquid film,leading to the formation of a gas ring along the wall.This process subsequently reduces wall heat flow,thereby affecting heat transfer.Computational fluid dynamics(CFD)is used to simulate the flow field of the non-Newtonian fluid in the ATFE.The investigation focuses on understanding the mechanism behind the formation of gas rings in the liquid film and proposes methods to prevent their formation.The results demonstrate a transition of the gas from a gas ring suspended in the liquid to a gas ring attached to the wall after entering the liquid film.The scraping action around the circumference of the scraper helps to expel gas rings,indicating the necessity of adjusting the scraper arrangement and increasing the frequency of scraping to enhance gas ring expulsion.The spiral motion of the bow wave serves as the source of gas entry into the liquid film.Therefore,the rotation speed can appropriately increase to reduce the size of the bow wave,thereby inhibiting the formation of the gas ring from the source.This research investigates the mechanism of gas ring generation and expulsion,offering theoretical guidance for processing high-viscosity non-Newtonian materials in the flow field of the ATFE.展开更多
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa...While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.展开更多
The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large ...The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large contact area compared to the disk-shaped evaporator.However,most of the research on rectangular evaporators focuses onworking fluids such as water,methanol,and acetone,when theseworking fluids are in operation,the internal pressure of the evaporator is less than atmospheric pressure.Ammonia,propylene,and other working fluids can also be utilized in the loop heat pipe,these working fluids demonstrate better performance when operating within other temperature intervals,for example,the operating temperature range of ammonia is−20℃to 50℃,however,in an atmospheric pressure environment,it is very difficult for the shell of the rectangular evaporator to withstand the saturated vapor pressure of the working fluid.This paper designs a rectangular flat plate loop heat pipe that can use ammonia as the working fluid.The internal reinforcing structure is used to improve the pressure strength of the shell.The secondary wick connects the compensation chamber and the capillary wick hydraulically.The experiment indicates that this kind of rectangular evaporator is unaffected by the position,and the secondary wick can effectively supply liquid under different angles.The thermal resistance of the evaporator wall was analyzed,and it was found that the thermal resistance of the evaporator wall was the main component of the thermal resistance of the system.The heat transfer capacities of 460 W@0.5 m and 200W@10 m were tested.The test results indicate that by setting a reinforcing structure inside the flat plate evaporator,the evaporator can withstand internal pressure.Combined with the design of the secondary wick,the flat plate evaporator can use working fluids with different pressures,expanding the range of available working fluids.展开更多
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report...Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.展开更多
The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and ma...The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.展开更多
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(...The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.展开更多
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ...The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.展开更多
基金financially supported by the“Qing-Lan”Project of Jiangsu ProvinceTop-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)the start-up fund from Yangzhou University。
文摘Enhancing wastewater treatment efficiency through innovative technologies is paramount in addressing global environmental challenges.This study explores utilizing stereoscopic hydrogel evaporators combined with renewable energy sources to optimize wastewater treatment processes.A cross-linked super absorbent polymer(SAP)hydrogel was synthesized using acrylic acid and 2-hydroxyethyl methacrylate monomers and integrated with a light-absorbing carbon membrane to form a solar-assisted evaporator(MSAP).The MSAP achieved a high evaporation rate of 3.08 kg m^(-2)·h^(-1)and a photothermal conversion efficiency of 94.27%.It demonstrated excellent removal efficiency for dye-polluted wastewater,significantly reducing concentrations of pollutants.The MSAP maintained high performance in outdoor conditions,showcasing its potential for real-world applications.This approach,incorporating both solar and wind energy,significantly boosts water evaporation rates and presents a promising,eco-friendly solution for sustainable wastewater treatment within the circular development framework.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering(SKL-ChE-22B01)the Natural Science Foundation of China(22008169).
文摘The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this study proposes an innovative hybrid approach that integrates wavelet neural network(WNN)with chaos analysis.By leveraging the Cross-Correlation(C−C)method,the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN.Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals,advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators.Moreover,this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings.
基金the financial support of the National Natural Science Foundation of China(No.52075309)the Youth Innovation Team of Shaanxi Universities(21JP021)。
文摘Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.
基金the National Key Research and Development Program of China(Grant No.2022YFC3901902)the National Natural Science Foundation of China(Grant Nos.52203037,52103031,and 52073107)。
文摘Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a fabric-based Janus interracial evaporator is efficiently fabricated on a large scale by integrating an extremely innovative self-designed melt-centrifugal spinning technology with spray coating technology.The prepared fabric-based Janus interfacial evaporator has differential hydrophilicity,uneven surfaces,and channels that allow moisture escape.Benefiting from the excellent photothermai conversion of graphene oxide and the charge transfer actions of titanium dioxide,such a multifunction evaporator can reach a high evaporation rate of 1.72 kg m^(-2)h^(-1)under 1 sun irradiation,a superior antibacterial rate of 99%,excellent photocatalytic degradation,and effective thermoelectric ability simultaneously.Moreover,it also shows fantastic performance in salt resistance,recyclable evaporation,and real desalination,This work demonstrates a high-efficiency,cost-effective,multifunctional,and scalable strategy for high-performance fiber fabrics solar interfacial evaporation.
基金National Natural Science Foundation of China(No.51905089)Fundamental Research Funds for the Central Universities,China(No.2232020D-31)。
文摘The agitated thin-film evaporator(ATFE)plays a crucial role in evaporation and concentration processes.The design of the scraper for processing high-viscosity non-Newtonian fluids in the ATFE is complex.The intricate scraping action of the scraper introduces gas into the liquid film,leading to the formation of a gas ring along the wall.This process subsequently reduces wall heat flow,thereby affecting heat transfer.Computational fluid dynamics(CFD)is used to simulate the flow field of the non-Newtonian fluid in the ATFE.The investigation focuses on understanding the mechanism behind the formation of gas rings in the liquid film and proposes methods to prevent their formation.The results demonstrate a transition of the gas from a gas ring suspended in the liquid to a gas ring attached to the wall after entering the liquid film.The scraping action around the circumference of the scraper helps to expel gas rings,indicating the necessity of adjusting the scraper arrangement and increasing the frequency of scraping to enhance gas ring expulsion.The spiral motion of the bow wave serves as the source of gas entry into the liquid film.Therefore,the rotation speed can appropriately increase to reduce the size of the bow wave,thereby inhibiting the formation of the gas ring from the source.This research investigates the mechanism of gas ring generation and expulsion,offering theoretical guidance for processing high-viscosity non-Newtonian materials in the flow field of the ATFE.
基金supported by National Key Research and Development Program of China(2022YFB3804902,2022YFB3804900)the National Natural Science Foundation of China(52203226,52161145406,42376045)the Fundamental Research Funds for the Central Universities(2232024Y-01,2232025D-02).
文摘While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.
基金Science Foundation for Distinguished Young Scholars 2020-JCJQ-ZQ-042.
文摘The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large contact area compared to the disk-shaped evaporator.However,most of the research on rectangular evaporators focuses onworking fluids such as water,methanol,and acetone,when theseworking fluids are in operation,the internal pressure of the evaporator is less than atmospheric pressure.Ammonia,propylene,and other working fluids can also be utilized in the loop heat pipe,these working fluids demonstrate better performance when operating within other temperature intervals,for example,the operating temperature range of ammonia is−20℃to 50℃,however,in an atmospheric pressure environment,it is very difficult for the shell of the rectangular evaporator to withstand the saturated vapor pressure of the working fluid.This paper designs a rectangular flat plate loop heat pipe that can use ammonia as the working fluid.The internal reinforcing structure is used to improve the pressure strength of the shell.The secondary wick connects the compensation chamber and the capillary wick hydraulically.The experiment indicates that this kind of rectangular evaporator is unaffected by the position,and the secondary wick can effectively supply liquid under different angles.The thermal resistance of the evaporator wall was analyzed,and it was found that the thermal resistance of the evaporator wall was the main component of the thermal resistance of the system.The heat transfer capacities of 460 W@0.5 m and 200W@10 m were tested.The test results indicate that by setting a reinforcing structure inside the flat plate evaporator,the evaporator can withstand internal pressure.Combined with the design of the secondary wick,the flat plate evaporator can use working fluids with different pressures,expanding the range of available working fluids.
基金This work was supported by the Taishan Young Scholar Program(tsqn202306267)the National Natural Science Foundation of China(51802168)the Natural Science Foundation of Shandong Province(ZR2023ME172).
文摘Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.
基金National Natural Science Foundation of China(Nos.51905089 and 52075093)Special Fund for Basic Research and Operating Costs of Central Colleges and Universities,China(No.22320D-31)Open Fund for National Key Laboratory of Tribology of Tsinghua University,China(No.SKLTKF20B05)。
文摘The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.
基金the Science and Technology Innovation Council of Shenzhen(Grant Nos.JCYJ20200109105212568,KQTD20170810105439418,JCYJ20200109114237902,20200812203318002,and 20200810103814002)the National Natural Science Foundation of China(Grant No.12274197)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515030240,2019A1515010790,2021A0505110015).
文摘The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos.52375172,52075093,and 51905089).
文摘The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.