Teachers' in-class evaluative speech is an indispensable part in English language teaching and also a is an indispensable and a weak point in English teaching. When using in-class evaluative speeches, the teacher ...Teachers' in-class evaluative speech is an indispensable part in English language teaching and also a is an indispensable and a weak point in English teaching. When using in-class evaluative speeches, the teacher made mistakes with a high frequency and failed to reach the purpose of it. This study attempts to investigate and analyze the meaning of teachers' in- class evaluative speeches, discusses some of the problems existing in teachers' evaluation in English classroom teaching and proposes countermeasures to improve the quality of it. It aims at causing the teachers' attention and correcting the mistakes of using inclass evaluative speeches.展开更多
Homologous recombination deficiency(HRD)has emerged as a critical prognostic and predictive biomarker in oncology.However,current test-ing methods,especially those reliant on targeted panels,are plagued by inconsisten...Homologous recombination deficiency(HRD)has emerged as a critical prognostic and predictive biomarker in oncology.However,current test-ing methods,especially those reliant on targeted panels,are plagued by inconsistent results from the same samples.This highlights the urgent need for standardized benchmarks to evaluate HRD assay performance.In phases lla and Ilb of the Chinese HRD Harmonization Project,we de-veloped ten pairs of well-characterized DNA reference materials derived from lung,breast,and melanoma cancer cell lines and their matched normal cell lines,keeping each paired with seven cancer-to-normal mass ratios.Reference datasets for allele-specific copy number variations(AsCNVs)and HRD scores were established and validated using three sequencing methods and nine analytical pipelines.The genomic instabil-ity scores(GISs)of the reference materials ranged from 11 to 96,enabling validation across various thresholds.The AsCNV reference datasets covered a genomic span of 2340 to 2749 Mb,equivalent to 81.2%to 95.4%of the autosomes in the 37d5 reference genome.These bench-marks were subsequently utilized to assess the accuracy and reproducibility of four HRD panel assays,revealing significant variability in both ASCNV detection and HRD scores.The concordance between panel-detected GISs and reference GISs ranged from 0.81 to 0.94,with only two assays exhibiting high overall agreement with Myriad MyChoice CDx for HRD classification.This study also identified specific challenges in ASCNV detection in HRD-related regions and the profound impact of high ploidy on consistency.The established HRD reference materials and datasets providea robust toolkit forobjective evaluation of HRD testing.展开更多
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g...Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.展开更多
BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an e...BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.展开更多
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to...Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.展开更多
Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as ...Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as a primary source for developing novel antiviral drugs,making the rapid discovery and evaluation of marine antiviral agents particularly crucial.Thus,future research should place greater emphasis on the identification of novel antiviral targets through the combination of artificial intelligence(AI)and structural pharmacology,as well as expanding the marine resource and target databases.展开更多
China is now in an era of multiple values. While there is some virtue in previous theories on the history of literature based on the theory of evolution, class struggle and the enlightenment, when it comes to the twen...China is now in an era of multiple values. While there is some virtue in previous theories on the history of literature based on the theory of evolution, class struggle and the enlightenment, when it comes to the twenty-first century, the histories of modem Chinese literature used in teaching are farfrom adequate for meeting the developmental needs of the times, society and literature. This is especially so in view of the putting forward of the goals of "putting people first" and "the harmonious society," and the great changes taking place in time and space, the function of literature and aesthetic taste. Hence there is an urgent need to restructure this history and establish a more fair, equal and reasonable system of evaluation. Such a system would have humanism as its highest principle, and truth, goodness and beauty as its three virtues. Its great superiority would be its functional characteristics of universality, transcendence, fairness, and human-centeredness.展开更多
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomar...Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods...Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva...Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.展开更多
BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth o...BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth on LTE during COVID-19 and to identify disparities in outcomes disaggregated by sociodemographic factors.METHODS This was a retrospective study of patients who initiated LTE at our center from 3/16/20-3/16/21(“COVID-19 era”)and the year prior(3/16/19-3/15/20,“pre-COVID-19 era”).We compared LTE duration times between eras and explored the effects of telehealth and inpatient evaluations on LTE duration,listing,and pretransplant mortality.RESULTS One hundred and seventy-eight patients were included in the pre-COVID-19 era cohort and one hundred and ninety-nine in the COVID-19 era cohort.Twentynine percent(58/199)of COVID-19 era initial LTE were telehealth,compared to 0%(0/178)pre-COVID-19.There were more inpatient evaluations during COVID-19 era(40%vs 28%,P<0.01).Among outpatient encounters,telehealth use for initial LTE during COVID-19 era did not impact likelihood of listing,pretransplant mortality,or time to LTE and listing.Median times to LTE and listing during COVID-19 were shorter than pre-COVID-19,driven by increased inpatient evaluations.Sociodemographic factors were not predictive of telehealth.CONCLUSION COVID-19 demonstrates a shift to telehealth and inpatient LTE.Telehealth does not impact LTE or listing duration,likelihood of listing,or mortality,suggesting telehealth may facilitate LTE without negative outcomes.展开更多
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b...Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.展开更多
Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides ne...Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.展开更多
Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interd...Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.展开更多
In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical...In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.展开更多
In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in...In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.展开更多
China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict ...China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.展开更多
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
文摘Teachers' in-class evaluative speech is an indispensable part in English language teaching and also a is an indispensable and a weak point in English teaching. When using in-class evaluative speeches, the teacher made mistakes with a high frequency and failed to reach the purpose of it. This study attempts to investigate and analyze the meaning of teachers' in- class evaluative speeches, discusses some of the problems existing in teachers' evaluation in English classroom teaching and proposes countermeasures to improve the quality of it. It aims at causing the teachers' attention and correcting the mistakes of using inclass evaluative speeches.
基金supported by the National Key R&D Program of China(Grant No.2022YFF1202203)the NIFDC Fund for Key Technology Research,China(Grant No.GJJS-2022-2-1).
文摘Homologous recombination deficiency(HRD)has emerged as a critical prognostic and predictive biomarker in oncology.However,current test-ing methods,especially those reliant on targeted panels,are plagued by inconsistent results from the same samples.This highlights the urgent need for standardized benchmarks to evaluate HRD assay performance.In phases lla and Ilb of the Chinese HRD Harmonization Project,we de-veloped ten pairs of well-characterized DNA reference materials derived from lung,breast,and melanoma cancer cell lines and their matched normal cell lines,keeping each paired with seven cancer-to-normal mass ratios.Reference datasets for allele-specific copy number variations(AsCNVs)and HRD scores were established and validated using three sequencing methods and nine analytical pipelines.The genomic instabil-ity scores(GISs)of the reference materials ranged from 11 to 96,enabling validation across various thresholds.The AsCNV reference datasets covered a genomic span of 2340 to 2749 Mb,equivalent to 81.2%to 95.4%of the autosomes in the 37d5 reference genome.These bench-marks were subsequently utilized to assess the accuracy and reproducibility of four HRD panel assays,revealing significant variability in both ASCNV detection and HRD scores.The concordance between panel-detected GISs and reference GISs ranged from 0.81 to 0.94,with only two assays exhibiting high overall agreement with Myriad MyChoice CDx for HRD classification.This study also identified specific challenges in ASCNV detection in HRD-related regions and the profound impact of high ploidy on consistency.The established HRD reference materials and datasets providea robust toolkit forobjective evaluation of HRD testing.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2342210 and 42275043)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant Nos.J2223806,ZDJ2024-25 and ZDJ2025-34)。
文摘Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.
基金Supported by Inter Disciplinary Direction Cultivation Project of Hunan University of Chinese Medicine,No.2025JC01032025 Hunan Province Science and Technology Innovation Plan Project,No.2025RC9012+2 种基金2022"Unveiling and Leading"Project of Discipline Construction at Hunan University of Chinese Medicine,No.22JBZ044Changsha Municipal Natural Science Foundation,No.kq2402174Hunan Provincial Science Popularization Fund Project,No.2025ZK4223.
文摘BACKGROUND Timely and accurate evaluation of mental disorders in adolescents using appropriate mental health literacy assessment tools is essential for improving their mental health literacy levels.AIM To develop an evaluation index system for the mental health literacy of adolescent patients with mental disorders,providing a scientific,comprehensive,and reliable tool for the monitoring and intervention of mental health literacy of such patients.METHODS From December 2022 to June 2023,the evaluation index system for mental health literacy of adolescents with mental disorders was developed through literature reviews,semi-structured interviews,expert letter consultations,and the analytic hierarchy process.Based on this index system,a self-assessment questionnaire was compiled and administered to 305 adolescents with mental disorders to test the reliability and validity of the index system.RESULTS The final evaluation index system for mental health literacy of adolescents with mental disorders included 4 first-level indicators,10 second-level indicators,and 52 third-level indicators.The overall Cronbach’sαcoefficient of the index system was 0.957,with a partial reliability of 0.826 and a content validity index of 0.975.The cumulative variance contribution rate of 10 common factors was 66.491%.The correlation coefficients between each dimension and the total questionnaire ranged from 0.672 to 0.724,while the correlation coefficients in each dimension ranged from 0.389 to 0.705.CONCLUSION The evaluation index system for mental health literacy of adolescents with mental disorders,developed in this study,demonstrated notable reliability and validity,making it a valuable tool for evaluating mental health literacy in this population.
基金supported by the Fundamental Research Funds for the Central Universities,Nos.G2021KY05107,G2021KY05101the National Natural Science Foundation of China,Nos.32071316,32211530049+1 种基金the Natural Science Foundation of Shaanxi Province,No.2022-JM482the Education and Teaching Reform Funds for the Central Universities,No.23GZ230102(all to LL and HH).
文摘Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.
文摘Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as a primary source for developing novel antiviral drugs,making the rapid discovery and evaluation of marine antiviral agents particularly crucial.Thus,future research should place greater emphasis on the identification of novel antiviral targets through the combination of artificial intelligence(AI)and structural pharmacology,as well as expanding the marine resource and target databases.
文摘China is now in an era of multiple values. While there is some virtue in previous theories on the history of literature based on the theory of evolution, class struggle and the enlightenment, when it comes to the twenty-first century, the histories of modem Chinese literature used in teaching are farfrom adequate for meeting the developmental needs of the times, society and literature. This is especially so in view of the putting forward of the goals of "putting people first" and "the harmonious society," and the great changes taking place in time and space, the function of literature and aesthetic taste. Hence there is an urgent need to restructure this history and establish a more fair, equal and reasonable system of evaluation. Such a system would have humanism as its highest principle, and truth, goodness and beauty as its three virtues. Its great superiority would be its functional characteristics of universality, transcendence, fairness, and human-centeredness.
基金supported by the Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education&Shanghai,No.CCTS-2022205the“Double World-Class Project”of Shanghai Jiaotong University School of Medicine(both to JZ)。
文摘Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金This paper is the research result of“Research on Innovation of Evidence-Based Teaching Paradigm in Vocational Education under the Background of New Quality Productivity”(2024JXQ176)the Shandong Province Artificial Intelligence Education Research Project(SDDJ202501035),which explores the application of artificial intelligence big models in student value-added evaluation from an evidence-based perspective。
文摘Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金primarily supported by the National Key R&D Program of China[grant number 2021YFC3000904]the Jiangsu Provincial Key Technology R&D Program[grant number BE2022851]National Natural Science Foundation of China[grant number 42405035]。
文摘Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.
文摘BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth on LTE during COVID-19 and to identify disparities in outcomes disaggregated by sociodemographic factors.METHODS This was a retrospective study of patients who initiated LTE at our center from 3/16/20-3/16/21(“COVID-19 era”)and the year prior(3/16/19-3/15/20,“pre-COVID-19 era”).We compared LTE duration times between eras and explored the effects of telehealth and inpatient evaluations on LTE duration,listing,and pretransplant mortality.RESULTS One hundred and seventy-eight patients were included in the pre-COVID-19 era cohort and one hundred and ninety-nine in the COVID-19 era cohort.Twentynine percent(58/199)of COVID-19 era initial LTE were telehealth,compared to 0%(0/178)pre-COVID-19.There were more inpatient evaluations during COVID-19 era(40%vs 28%,P<0.01).Among outpatient encounters,telehealth use for initial LTE during COVID-19 era did not impact likelihood of listing,pretransplant mortality,or time to LTE and listing.Median times to LTE and listing during COVID-19 were shorter than pre-COVID-19,driven by increased inpatient evaluations.Sociodemographic factors were not predictive of telehealth.CONCLUSION COVID-19 demonstrates a shift to telehealth and inpatient LTE.Telehealth does not impact LTE or listing duration,likelihood of listing,or mortality,suggesting telehealth may facilitate LTE without negative outcomes.
基金the National Key Research Program of China under granted No.92164201National Natural Science Foundation of China for Distinguished Young Scholars No.62325403+2 种基金Natural Science Foundation of Jiangsu Province(BK20230498)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB427)the National Natural Science Foundation of China(62304147).
文摘Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.
基金support of the National Natural Science Foundation of China(Grant No.52074332).
文摘Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.
文摘Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.
基金supported by the National Natural Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Outstanding Youth Project of Hunan Provincial Department of Education,China(Grant No.23B0008).
文摘In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.
文摘In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.
基金Supported by PetroChina Prospective and Basic Technological Project(2022DJ5503).
文摘China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.