Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest...Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.展开更多
We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) ...We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.展开更多
The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “o...The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.展开更多
Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton ...Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 degreesC. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (K-m) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl- > Br- > I- > F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N, N'-dicyclohexylcarbodiimide (DCCD), NO3- and Bafilomycin A(1), but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.展开更多
基金funded by the Talents ans its Youth Project of Xinjiang Production and Construction Corps(38000020924,380000358).
文摘Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.
文摘We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.
文摘The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.
文摘Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 degreesC. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (K-m) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl- > Br- > I- > F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N, N'-dicyclohexylcarbodiimide (DCCD), NO3- and Bafilomycin A(1), but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.