The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of po...The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.展开更多
The research of poly(ethylene oxide)(PEO)-based solid composite electrolyte with high ionic conductivity and excellent interfacial stability is the key to the development of all-solid-state lithium-ion batteries(ASSLI...The research of poly(ethylene oxide)(PEO)-based solid composite electrolyte with high ionic conductivity and excellent interfacial stability is the key to the development of all-solid-state lithium-ion batteries(ASSLIBs). Herein, uniform nanorod structured CeO_(2) fillers were controllably synthesized by electrospinning, which were subsequently filled into PEO polymer to prepare CeO_(2)/PEO solid composite electrolyte. The addition of CeO_(2) nanorods can reduce both the glass transition temperature and the melting point of PEO polymer, and also interact with PEO and lithium bis(trifluoromethanesulphonyl)imide(LITFSI) by Lewis acid—base reaction. Therefore, the solid composite electrolyte exhibits a high ionic conductivity of 4.52 × 10^(-4)S/cm, a wide electrochemical stability window of about 4.8 V, and a good interfacial stability with Li at 55℃. Moreover, the LiFePO_4/Li ASSLIB divulges the discharging specific capacity of 165, 162, 156 and 146 mA,h/g at 0.2, 0.5, 1 and 2 C, respectively, and achieves the capacity retention of 90.3% after 150 cycles at 0.5 C. Consequently, one dimensional CeO_(2) nanorods can be considered as an alternative filler for polymeric solid electrolyte.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results s...The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results show that this kind of reaction has similar mechanism, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Ge=C: gives a p→p donor-acceptor bond, thereby leading to the formation of intermediate. As the p→p donor-acceptor bond continues to strengthen, that is the C-O bond continues to shorten, the intermediate generates product (P+C2H4) via transition state. It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.展开更多
At present,replacing the liquid electrolyte in a lithium metal battery with a solid electrolyte is considered to be one of the most powerful strategies to avoid potential safety hazards.Composite solid electrolytes(CP...At present,replacing the liquid electrolyte in a lithium metal battery with a solid electrolyte is considered to be one of the most powerful strategies to avoid potential safety hazards.Composite solid electrolytes(CPEs)have excellent ionic conductivity and flexibility owing to the combination of functional inorganic materials and polymer solid electrolytes(SPEs).Nevertheless,the ionic conductivity of CPEs is still lower than those of commercial liquid electrolytes,so the development of high-performance CPEs has important practical significance.Herein,a novel fast lithium-ion conductor material LiTa_(2)PO_(8) was first filled into poly(ethylene oxide)(PEO)-based SPE,and the optimal ionic conductivity was achieved by filling different concentrations(the ionic conductivity is 4.61×10^(-4)S/cm with a filling content of 15 wt%at 60℃).The enhancement in ionic conductivity is due to the improvement of PEO chain movement and the promotion of LiTFSI dissociation by LiTa_(2)PO_(8).In addition,LiTa_(2)PO_(8) also takes the key in enhancing the mechanical strength and thermal stability of CPEs.The assembled LiFePO_(4) solid-state lithium metal battery displays better rate performance(the specific capacities are as high as 157.3,152,142.6,105 and 53.1 mAh/g under0.1,0.2,0.5,1 and 2 C at 60℃,respectively)and higher cycle performance(the capacity retention rate is86.5%after 200 cycles at 0.5 C and 60℃).This research demonstrates the feasibility of LiTa_(2)PO_(8) as a filler to improve the performance of CPEs,which may provide a fresh platform for developing more advanced solid-state electrolytes.展开更多
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e...Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).L...The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.展开更多
Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic ac...Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.展开更多
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ...Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.展开更多
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H...Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.展开更多
Crystal patterns in ultrathin films of six poly(ethylene oxide) fractions with molecular weights from 25000 to 932000 g/mol were characterized within crystallization temperature range from 20 ℃to 60℃. Labyrinthine...Crystal patterns in ultrathin films of six poly(ethylene oxide) fractions with molecular weights from 25000 to 932000 g/mol were characterized within crystallization temperature range from 20 ℃to 60℃. Labyrinthine, dendritic and faceted crystal patterns were observed in different temperature ranges, and then labyrinthine-to-dendritic and dendritic-to- faceted transition temperatures T_L-D and T_D-F were quantitatively identified. Their molecular weight dependences are T_L-D(M_w) = T_L-D(∞) -K_L-D/M_w, where T_L-D(∞) = 38.2 ℃ and K_L-D = 253000 ℃.g/mol and T_D-F(M_w) = T_D-F(∞) -K_D-F/M_w, where T_D-F(∞) = 54.7 ℃ and K_D-F= 27000 ℃.g/mol. Quasi two-dimensional blob models were proposed to provide empirical explanations of the molecular weight dependences. The labyrinthine-to-dendritic transition is attributed to a molecular diffusion process change from a local-diffusion to diffusion-limited-aggregation (DLA) and a polymer chain with M_w ≈253000 g/mol within a blob can join crystals independently. The dendritic-to-faceted transition is attributed to a turnover of the pattern formation mechanism from DLA to crystallization control, and a polymer chain with a M_w ≈27000 g/tool as an independent blob crosses to a depletion zone to join crystals. These molecular weight dependences reveal a macromolecular effect on the crystal pattern formation and selection of crystalline polymers.展开更多
Carboxymethyl chitosan/poly(ethylene oxide)(CCTS/PEO) composite is firstly reported as a water soluble binder for the application of 5V LiNi0.5Mn1.5O4 cathode in Li-ion batteries. Both CCTS and PEO show a high ele...Carboxymethyl chitosan/poly(ethylene oxide)(CCTS/PEO) composite is firstly reported as a water soluble binder for the application of 5V LiNi0.5Mn1.5O4 cathode in Li-ion batteries. Both CCTS and PEO show a high electrochemical oxidation potential of above 5.0 V(vs. Li/Li+). The electrochemical performances of LiNi0.5Mn1.5O4(LNMO) cathodes with CCTS/PEO composite binders of different mass rates are investigated, it is found that LiNi0.5Mn1.5O4 cathode with an optimized CCTS/PEO(85/15, w/w) composite exhibits a slightly better cycling performance than that of polyvinylidene fluoride(PVDF), retaining 81.4% capacity as compared with 79.8% for PVDF at 0.5C rate after 200 cycles. LNMO with PEO/CCTS(85/15,w/w) exhibited the better rate capability than that of PVDF. These results demonstrate that CCTS/PEO composite can be potentially used as a water-soluble binder for 5 V LNMO cathode.展开更多
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t...Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.展开更多
This paper investigates steady-state and dynamic simulation of an industrial fixed-bed ethylene oxide reactor. A mathematical heterogeneous one-dimensional model is developed for simulation of reactor performance in t...This paper investigates steady-state and dynamic simulation of an industrial fixed-bed ethylene oxide reactor. A mathematical heterogeneous one-dimensional model is developed for simulation of reactor performance in the presence of long term deactivation of silver/a-alumina catalyst. In this paper, steady-state model of the reactor is solved and results of steady state simulation are fed to dynamic simulator as initial condition. When results of dynamic simulation are compared with industrial reactor data, it is found that there were good agreements between simulation results and industrial data. The proposed model is also validated by industrial process data for a period of 1100 operating days.展开更多
The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorpti...The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorption and subsequent impregnation.The catalytic tests show that the introduction of Ru into the Pt catalyst,so as to form Pt-Ru bimetallic active sites,can greatly increase the oxidation activity of the catalyst,as evidenced by the extremely lower full oxidation temperature(120℃)when compared with that of the Pt/CeO_(2) catalyst(160℃).The XPS spectra show that the Ru species(mainly RuO_(x))have strong interaction with the CuCeO_(x) support,which can therefore affect the electron transfer between the Pt species and the support.As a result,the oxygen activation on Pt species is obviously facilitated and catalytic activity is enhanced.Finally,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)was used to track the reaction mechanism.It is found that the catalytic oxidation process follows the MvK catalytic mechanism at low temperature and the L-H catalytic mechanism when the temperature moves to higher range.展开更多
The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticpara...The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticparameters are obtained by numerical optimization of the kinetic model.展开更多
Poly (4- methylphenoxyphosphnzene ) -graft-poly ( ethylene oxide ) ( PPZ-g- PEO ), a novel amphiphilie grafting polymer was prepared via the Decker-Forster reaction. It is found that the graft efficiency increas...Poly (4- methylphenoxyphosphnzene ) -graft-poly ( ethylene oxide ) ( PPZ-g- PEO ), a novel amphiphilie grafting polymer was prepared via the Decker-Forster reaction. It is found that the graft efficiency increased with extension of reaction time. Low molecular weight of poly ( ethylene oxide ) favored the grafting reaction. The grafted polymer has two different glass transition temperatures( Tg) with those of pure poly( 4-methyl- phenoxy-phopsphazene ) and PEO. The emulsifying ability of grafted polymer was studied with benzene-water mixtare. The emulsifying volumes increased with the decreasing of PEO' s molecular weight. The contact angle of film forming from grafted polymer decreased after introduction of PEO grafting chain.展开更多
The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrixcrystallinity as the fillers which are partly ...The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrixcrystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEOcrystallites. As a result, the electrical percolation behavior is related with the matrix morphology.展开更多
Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were ...Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0101200006)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011926)+1 种基金Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2023B1212060003)State Key Laboratory of Applied Microbiology Southern China(No.SKLAM008-2022)。
文摘The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.
基金Project supported by the Education Department of Henan Province(22A170017)the Science and Technology Department of Henan Province(232102240011)+1 种基金Henan Institute of Science and Technology(2016034)National College Students'Innovation and Entrepreneurship Training Program(202211071012)。
文摘The research of poly(ethylene oxide)(PEO)-based solid composite electrolyte with high ionic conductivity and excellent interfacial stability is the key to the development of all-solid-state lithium-ion batteries(ASSLIBs). Herein, uniform nanorod structured CeO_(2) fillers were controllably synthesized by electrospinning, which were subsequently filled into PEO polymer to prepare CeO_(2)/PEO solid composite electrolyte. The addition of CeO_(2) nanorods can reduce both the glass transition temperature and the melting point of PEO polymer, and also interact with PEO and lithium bis(trifluoromethanesulphonyl)imide(LITFSI) by Lewis acid—base reaction. Therefore, the solid composite electrolyte exhibits a high ionic conductivity of 4.52 × 10^(-4)S/cm, a wide electrochemical stability window of about 4.8 V, and a good interfacial stability with Li at 55℃. Moreover, the LiFePO_4/Li ASSLIB divulges the discharging specific capacity of 165, 162, 156 and 146 mA,h/g at 0.2, 0.5, 1 and 2 C, respectively, and achieves the capacity retention of 90.3% after 150 cycles at 0.5 C. Consequently, one dimensional CeO_(2) nanorods can be considered as an alternative filler for polymeric solid electrolyte.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
文摘The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results show that this kind of reaction has similar mechanism, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Ge=C: gives a p→p donor-acceptor bond, thereby leading to the formation of intermediate. As the p→p donor-acceptor bond continues to strengthen, that is the C-O bond continues to shorten, the intermediate generates product (P+C2H4) via transition state. It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.52073212,51772205,51772208)the General Program of Municipal Natural Science Foundation of Tianjin(Nos.17JCYBJC17000,17JCYBJC22700)。
文摘At present,replacing the liquid electrolyte in a lithium metal battery with a solid electrolyte is considered to be one of the most powerful strategies to avoid potential safety hazards.Composite solid electrolytes(CPEs)have excellent ionic conductivity and flexibility owing to the combination of functional inorganic materials and polymer solid electrolytes(SPEs).Nevertheless,the ionic conductivity of CPEs is still lower than those of commercial liquid electrolytes,so the development of high-performance CPEs has important practical significance.Herein,a novel fast lithium-ion conductor material LiTa_(2)PO_(8) was first filled into poly(ethylene oxide)(PEO)-based SPE,and the optimal ionic conductivity was achieved by filling different concentrations(the ionic conductivity is 4.61×10^(-4)S/cm with a filling content of 15 wt%at 60℃).The enhancement in ionic conductivity is due to the improvement of PEO chain movement and the promotion of LiTFSI dissociation by LiTa_(2)PO_(8).In addition,LiTa_(2)PO_(8) also takes the key in enhancing the mechanical strength and thermal stability of CPEs.The assembled LiFePO_(4) solid-state lithium metal battery displays better rate performance(the specific capacities are as high as 157.3,152,142.6,105 and 53.1 mAh/g under0.1,0.2,0.5,1 and 2 C at 60℃,respectively)and higher cycle performance(the capacity retention rate is86.5%after 200 cycles at 0.5 C and 60℃).This research demonstrates the feasibility of LiTa_(2)PO_(8) as a filler to improve the performance of CPEs,which may provide a fresh platform for developing more advanced solid-state electrolytes.
基金Supported by the National Natural Science Foundation of China and the State Education Committee of China
文摘Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金supported by the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)the National Natural Science Foundation of China(Nos.21878216,22005215)+1 种基金Hebei Province Innovation Ability Promotion Project(No.20312201D)the National Key Research and Development Program of China(No.2019YFE0118800)。
文摘The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.
文摘Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.
文摘Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.
文摘Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.
基金financially supported by the National Science Foundation of China(No.20874053)
文摘Crystal patterns in ultrathin films of six poly(ethylene oxide) fractions with molecular weights from 25000 to 932000 g/mol were characterized within crystallization temperature range from 20 ℃to 60℃. Labyrinthine, dendritic and faceted crystal patterns were observed in different temperature ranges, and then labyrinthine-to-dendritic and dendritic-to- faceted transition temperatures T_L-D and T_D-F were quantitatively identified. Their molecular weight dependences are T_L-D(M_w) = T_L-D(∞) -K_L-D/M_w, where T_L-D(∞) = 38.2 ℃ and K_L-D = 253000 ℃.g/mol and T_D-F(M_w) = T_D-F(∞) -K_D-F/M_w, where T_D-F(∞) = 54.7 ℃ and K_D-F= 27000 ℃.g/mol. Quasi two-dimensional blob models were proposed to provide empirical explanations of the molecular weight dependences. The labyrinthine-to-dendritic transition is attributed to a molecular diffusion process change from a local-diffusion to diffusion-limited-aggregation (DLA) and a polymer chain with M_w ≈253000 g/mol within a blob can join crystals independently. The dendritic-to-faceted transition is attributed to a turnover of the pattern formation mechanism from DLA to crystallization control, and a polymer chain with a M_w ≈27000 g/tool as an independent blob crosses to a depletion zone to join crystals. These molecular weight dependences reveal a macromolecular effect on the crystal pattern formation and selection of crystalline polymers.
基金supported by the K.C.Wong Education Foundation,National Natural Science Foundation of China(No.21573239)Science&Technology project of Guangdong province(No.2014TX01N014/2015B010135008)+1 种基金Guangzhou Municipal Project for Science&Technology(No.201509010018)the Natural Science Foundation of Guangdong Province(No.2015A030313721)
文摘Carboxymethyl chitosan/poly(ethylene oxide)(CCTS/PEO) composite is firstly reported as a water soluble binder for the application of 5V LiNi0.5Mn1.5O4 cathode in Li-ion batteries. Both CCTS and PEO show a high electrochemical oxidation potential of above 5.0 V(vs. Li/Li+). The electrochemical performances of LiNi0.5Mn1.5O4(LNMO) cathodes with CCTS/PEO composite binders of different mass rates are investigated, it is found that LiNi0.5Mn1.5O4 cathode with an optimized CCTS/PEO(85/15, w/w) composite exhibits a slightly better cycling performance than that of polyvinylidene fluoride(PVDF), retaining 81.4% capacity as compared with 79.8% for PVDF at 0.5C rate after 200 cycles. LNMO with PEO/CCTS(85/15,w/w) exhibited the better rate capability than that of PVDF. These results demonstrate that CCTS/PEO composite can be potentially used as a water-soluble binder for 5 V LNMO cathode.
文摘Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.
文摘This paper investigates steady-state and dynamic simulation of an industrial fixed-bed ethylene oxide reactor. A mathematical heterogeneous one-dimensional model is developed for simulation of reactor performance in the presence of long term deactivation of silver/a-alumina catalyst. In this paper, steady-state model of the reactor is solved and results of steady state simulation are fed to dynamic simulator as initial condition. When results of dynamic simulation are compared with industrial reactor data, it is found that there were good agreements between simulation results and industrial data. The proposed model is also validated by industrial process data for a period of 1100 operating days.
基金Project supported by the National Natural Science Foundation of China(22208300,22078294,21922607)Natural Science Foundation of Zhejiang Province(LZ21E080001,LGF20E080018).
文摘The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorption and subsequent impregnation.The catalytic tests show that the introduction of Ru into the Pt catalyst,so as to form Pt-Ru bimetallic active sites,can greatly increase the oxidation activity of the catalyst,as evidenced by the extremely lower full oxidation temperature(120℃)when compared with that of the Pt/CeO_(2) catalyst(160℃).The XPS spectra show that the Ru species(mainly RuO_(x))have strong interaction with the CuCeO_(x) support,which can therefore affect the electron transfer between the Pt species and the support.As a result,the oxygen activation on Pt species is obviously facilitated and catalytic activity is enhanced.Finally,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)was used to track the reaction mechanism.It is found that the catalytic oxidation process follows the MvK catalytic mechanism at low temperature and the L-H catalytic mechanism when the temperature moves to higher range.
文摘The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticparameters are obtained by numerical optimization of the kinetic model.
文摘Poly (4- methylphenoxyphosphnzene ) -graft-poly ( ethylene oxide ) ( PPZ-g- PEO ), a novel amphiphilie grafting polymer was prepared via the Decker-Forster reaction. It is found that the graft efficiency increased with extension of reaction time. Low molecular weight of poly ( ethylene oxide ) favored the grafting reaction. The grafted polymer has two different glass transition temperatures( Tg) with those of pure poly( 4-methyl- phenoxy-phopsphazene ) and PEO. The emulsifying ability of grafted polymer was studied with benzene-water mixtare. The emulsifying volumes increased with the decreasing of PEO' s molecular weight. The contact angle of film forming from grafted polymer decreased after introduction of PEO grafting chain.
文摘The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrixcrystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEOcrystallites. As a result, the electrical percolation behavior is related with the matrix morphology.
基金Project supported by the National Natural Science Foundation of China.
文摘Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend.