Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-pot...Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.展开更多
Compared with graphite,the lower sodiation potential and larger discharge capacity of hard carbon(HC)makes it the most promising anode material for sodium-ion battery.Utilizing ether-based electrolyte rather than conv...Compared with graphite,the lower sodiation potential and larger discharge capacity of hard carbon(HC)makes it the most promising anode material for sodium-ion battery.Utilizing ether-based electrolyte rather than conventional carbonate-based electrolyte,HC achieves superior electrochemical performance.Nevertheless,the mechanism by which ether-based electrolyte improves the properties of HC is still controversial,primarily focusing on whether it forms solid electrolyte interphase(SEI)film.In this work,according to the sodium storage mechanisms in HC at low voltage(<0.1 V),including Na^(+)-diglyme co-interaction into the carbon layer(SEI forbidden)and desolvated Na^(+)insertion in the irregular carbon holes(SEI required),the NaPF6concentration in ether-based electrolyte was regulated,so as to construct a discontinuous-SEI on the surface of the HC anode,which significantly enhances the electrochemical performances of HC.Specifically,with 0.2 M NaPF6ether-based electrolyte,HC deliverers a discharge capacity of 459.7 mA h g^(-1)at 0.1 C and stays at 357.2 mA h g^(-1)after 500 cycles at 1 C,which is substantially higher than that of higher/lower salt concentration electrolytes.展开更多
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the...Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.展开更多
Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synth...Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C_(14)H_6 O_4 Na_2 composited with carbon nanotube(C_(14)H_6 O_4 Na_2-CNT), used as an anode material for sodium-ion batteries in etherbased electrolyte. The C_(14)H_6 O_4 Na_2-CNT electrode delivers a reversible capacity of 173 mAh g^(-1) and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C.Furthermore, the average Na insertion voltage of 1.27 V vs. Na^+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.展开更多
Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the de...Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.展开更多
Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid e...Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid electrolyte interphase(SEI)film.However,these electrolytes face challenges in achieving a balance between the weak solvation affinity and high ionic conductivity,as well as between rigid inorganic-rich SEI and flexible SEI for long-term stability.Herein,we introduce 1,3-dioxolane(DOL)and lithium bis(trifluoromethanesulfonyl)-imide(LiTFSI)as functional additives into a WSE based on nonpolar cyclic ether(1,4-dioxane).The well-formulated WSE not only preserves the weakly solvated features and anion-dominated solvation sheath,but also utilizes DOL to contribute organic species for stabilizing the SEI layer.Benefitting from these merits,the optimized electrolyte enables graphite anode with excellent fast-charging performance(210 mAh/g at 5 C)and outstanding cycling stability(600 cycles with a capacity retention of 82.0%at room temperature and 400 cycles with a capacity retention of 80.4%at high temper-ature).Furthermore,the fabricated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)||graphite full cells demonstrate stable operation for 140 cycles with high capacity retention of 80.3%.This work highlights the potential of tailoring solvation sheath and interphase properties in WSEs for advanced electrolyte design in graphite-based lithium-ion batteries.展开更多
Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stabil...Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stability of the lithium metal batteries(LMBs).Nonetheless,EBEs still face the challenge of oxidative decomposition under high voltage,which will corrode the structure of cathodes,destroy the stability of the electrode−electrolyte interface,and even cause safety risks.Herein,the types and challenges of EBEs are reviewed,the strategies for improving the high voltage stability of EBEs and constructing stable electrode−electrolyte interfaces are discussed in detail.Finally,the future perspectives and potential directions for composition optimization of EBEs and electrolyte−electrode interface regulation of high-voltage LMBs are explored.展开更多
Heteroatom doping is a universal approach to improve rate capability for various carbon anodes of sodium-ion batteries(SIBs)owing to the interlayer spacing expansion and pseudocapacitive enhancement.However,there is s...Heteroatom doping is a universal approach to improve rate capability for various carbon anodes of sodium-ion batteries(SIBs)owing to the interlayer spacing expansion and pseudocapacitive enhancement.However,there is still a limitation for ion adsorption of internal voids and dopants in the bulk phase of carbon materials due to the sluggish intercalation kinetics of large-size sodium ions.In this work,the highly sulfur-doped carbon nanosheets are synthesized and investigated as the anode of SIBs.It shows that the electrochemical performance in ether-based electrolytes significantly outperforms that in ester-based electrolytes.The carbon anodes exhibit a specific capacity of 617 mAh·g^(-1) at 100 mA·g^(-1) after 300 cycles,especially an outstanding rate performance of delivering specific capacities of 305 and 191 mAh·g^(-1) at current densities of 10 and 50 A·g^(-1),respectively.It is speculated that the ion-storage kinetics was greatly enhanced in ether-based electrolytes owing to the better accessibility of sodium-ion diffusion from electrode interfaces to internal hosts.As a result,the carbon nanovoids and sulfur dopants in the bulk phase are efficiently activated for ion storage.This work provides a new insight into the ion-storage mechanism optimization of carbon materials for SIBs.展开更多
Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental ...Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.展开更多
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.L...Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho...Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.展开更多
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l...This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.展开更多
This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5...This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/)_5Bi_(1/5))_(x)O_(2-δ)(GSEYB)system.This system holds promise as a solid electrolyte material for low and medium-temperature solid oxide fuel cells.The powders of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)(x=0,0.10,0.15,0.20,0.25,0.30)were synthesized using the solid-phase reaction method.The GSEYB electrolytes were comprehensively investigated for their phase structure,microstructure,oxygen vacancy concentration,and ionic conductivity using X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and impedance spectroscopy.XRD diffraction patterns confirm a cubic fluorite-type structure with Fm3m space groups in all multi-doped systems.After sintering at 1400℃for 10 h,the relative density of doped samples exceeds 96%.In terms of electrical properties,the Ce_(0.75)Gd_(0.05)Sm_(0.05)Er_(0.05)Y_(0.05)Bi_(0.05)O_(2-δ)(x=0.25)electrolyte exhibits the highest ionic conductivity(σ_(t)=4.45×10^(-2)S/cm)and the lowest activation energy(E_(a)=0.79 eV)at 800℃.The coefficient of thermal expansion of the developed electrolyte aligns well with that of the commonly used electrode materials.This compatibility positions it as a highly promising candidate for utilization as an electrolyte material in solid oxide fuel cells(SOFCs).展开更多
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt...The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.展开更多
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c...The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.展开更多
Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibilit...Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibility with lithium metal limit their application.Herein,Li_(5.4)PS_(4.4)Cl1.4I0.2solid electrolyte with high ionic conductivity of 11.49 m S ccm^(-1)and improved chemical stability is synthesized by iodine doping.An ultra-thin Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane with thickness of 10μm can be obtained by wet coating process,exhibiting a high ionic conductivity of 2.09 mS ccm^(-1)and low areal resistance of 1.17Ωcm^(-2).Moreover,iodine doping could in-situ form LiI at the lithium/electrolyte interface and improve the critical current density of Li_(5.4)PS_(4.4)Cl_(1.6)from 0.8 to 1.35 mA cm^(-2).The resultant LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)/Li battery shows excellent cycling stability at 1 C,with a reversible specific capacity of 110.1 mA h g^(-1)and a retention of 80.5% after 1000 cycles.In addition,the assembled LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane/Li pouch cell delivers an initial discharge capacity of 110.4 mA h g^(-1)and 80.5% capacity retention after 100 cycles.展开更多
Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-form...Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.展开更多
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig...The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1804129,21771164,21671205,U1804126)Zhongyuan Youth Talent Support Program of Henan ProvinceZhengzhou University Youth Innovation Program。
文摘Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.
基金supported by the National Natural Science Foundation of China(No.21972049)。
文摘Compared with graphite,the lower sodiation potential and larger discharge capacity of hard carbon(HC)makes it the most promising anode material for sodium-ion battery.Utilizing ether-based electrolyte rather than conventional carbonate-based electrolyte,HC achieves superior electrochemical performance.Nevertheless,the mechanism by which ether-based electrolyte improves the properties of HC is still controversial,primarily focusing on whether it forms solid electrolyte interphase(SEI)film.In this work,according to the sodium storage mechanisms in HC at low voltage(<0.1 V),including Na^(+)-diglyme co-interaction into the carbon layer(SEI forbidden)and desolvated Na^(+)insertion in the irregular carbon holes(SEI required),the NaPF6concentration in ether-based electrolyte was regulated,so as to construct a discontinuous-SEI on the surface of the HC anode,which significantly enhances the electrochemical performances of HC.Specifically,with 0.2 M NaPF6ether-based electrolyte,HC deliverers a discharge capacity of 459.7 mA h g^(-1)at 0.1 C and stays at 357.2 mA h g^(-1)after 500 cycles at 1 C,which is substantially higher than that of higher/lower salt concentration electrolytes.
基金the financial supports from the KeyArea Research and Development Program of Guangdong Province (2020B090919001)the National Natural Science Foundation of China (22078144)the Guangdong Natural Science Foundation for Basic and Applied Basic Research (2021A1515010138 and 2023A1515010686)。
文摘Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.
基金supported by funding from the National Key Technologies R&D Program (2016YFB0901500)the NSFC (11234013 and 51421002)the One Hundred Talent Project of the Chinese Academy of Sciences
文摘Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C_(14)H_6 O_4 Na_2 composited with carbon nanotube(C_(14)H_6 O_4 Na_2-CNT), used as an anode material for sodium-ion batteries in etherbased electrolyte. The C_(14)H_6 O_4 Na_2-CNT electrode delivers a reversible capacity of 173 mAh g^(-1) and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C.Furthermore, the average Na insertion voltage of 1.27 V vs. Na^+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.
基金the National Natural Science Foundation of China (21773055, U1604122, 22005085)。
文摘Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.
基金support from the National Key Research and Development Program of China(No.2022YFB2402200)National Natural Science Foundation of China(No.22109028)+1 种基金Natural Science Foundation of Shanghai(No.22ZR1404400)Chenguang Program sponsored by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.19CG01).
文摘Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid electrolyte interphase(SEI)film.However,these electrolytes face challenges in achieving a balance between the weak solvation affinity and high ionic conductivity,as well as between rigid inorganic-rich SEI and flexible SEI for long-term stability.Herein,we introduce 1,3-dioxolane(DOL)and lithium bis(trifluoromethanesulfonyl)-imide(LiTFSI)as functional additives into a WSE based on nonpolar cyclic ether(1,4-dioxane).The well-formulated WSE not only preserves the weakly solvated features and anion-dominated solvation sheath,but also utilizes DOL to contribute organic species for stabilizing the SEI layer.Benefitting from these merits,the optimized electrolyte enables graphite anode with excellent fast-charging performance(210 mAh/g at 5 C)and outstanding cycling stability(600 cycles with a capacity retention of 82.0%at room temperature and 400 cycles with a capacity retention of 80.4%at high temper-ature).Furthermore,the fabricated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)||graphite full cells demonstrate stable operation for 140 cycles with high capacity retention of 80.3%.This work highlights the potential of tailoring solvation sheath and interphase properties in WSEs for advanced electrolyte design in graphite-based lithium-ion batteries.
基金financial support from the Natural Science Foundation of Hunan Province,China (No.2023JJ40759)the State Key Laboratory of Powder Metallurgy in Central South University,China。
文摘Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stability of the lithium metal batteries(LMBs).Nonetheless,EBEs still face the challenge of oxidative decomposition under high voltage,which will corrode the structure of cathodes,destroy the stability of the electrode−electrolyte interface,and even cause safety risks.Herein,the types and challenges of EBEs are reviewed,the strategies for improving the high voltage stability of EBEs and constructing stable electrode−electrolyte interfaces are discussed in detail.Finally,the future perspectives and potential directions for composition optimization of EBEs and electrolyte−electrode interface regulation of high-voltage LMBs are explored.
基金supported by the National Natural Science Foundation of China(Nos.52307243 and 52272213)the Natural Science Foundation of Jiangsu Province(No.BK20230537)+2 种基金the China Postdoctoral Science Foundation(No.2023M741451)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB140003)the Jiangsu University Advanced Talent Research Startup Fund(No.22JDG052).
文摘Heteroatom doping is a universal approach to improve rate capability for various carbon anodes of sodium-ion batteries(SIBs)owing to the interlayer spacing expansion and pseudocapacitive enhancement.However,there is still a limitation for ion adsorption of internal voids and dopants in the bulk phase of carbon materials due to the sluggish intercalation kinetics of large-size sodium ions.In this work,the highly sulfur-doped carbon nanosheets are synthesized and investigated as the anode of SIBs.It shows that the electrochemical performance in ether-based electrolytes significantly outperforms that in ester-based electrolytes.The carbon anodes exhibit a specific capacity of 617 mAh·g^(-1) at 100 mA·g^(-1) after 300 cycles,especially an outstanding rate performance of delivering specific capacities of 305 and 191 mAh·g^(-1) at current densities of 10 and 50 A·g^(-1),respectively.It is speculated that the ion-storage kinetics was greatly enhanced in ether-based electrolytes owing to the better accessibility of sodium-ion diffusion from electrode interfaces to internal hosts.As a result,the carbon nanovoids and sulfur dopants in the bulk phase are efficiently activated for ion storage.This work provides a new insight into the ion-storage mechanism optimization of carbon materials for SIBs.
基金supported by the National Natural Science Foundation of China(52002297)National Key R&D Program of China(2022VFB2404800)+1 种基金Wuhan Yellow Crane Talents Program,China Postdoctoral Science Foundation(No.2024M752495)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
基金financially supported by Shenzhen Science and Technology Program(JCYJ20240813142900001)Guangdong Provincial Key Laboratory of New Energy Materials Service Safety。
文摘Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Natural Science Foundation of China (Nos. 22379121, 62005216)Basic Public Welfare Research Program of Zhejiang (No. LQ22F050013)+1 种基金Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (2023FE005)Shenzhen Foundation Research Program (No. JCYJ20220530112812028)。
文摘Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.
文摘This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.
基金supported by the Guangdong Provincial Basic and Applied Basic Research Foundation(2021A1515010671,2020A1515011221)the Guangdong Provincial Key Discipline Research Capacity Enhancement Project(2021ZDJS071)the Guangdong Provincial College Innovation Project(2021KTSCX122,2022KQNCX077)。
文摘This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/)_5Bi_(1/5))_(x)O_(2-δ)(GSEYB)system.This system holds promise as a solid electrolyte material for low and medium-temperature solid oxide fuel cells.The powders of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)(x=0,0.10,0.15,0.20,0.25,0.30)were synthesized using the solid-phase reaction method.The GSEYB electrolytes were comprehensively investigated for their phase structure,microstructure,oxygen vacancy concentration,and ionic conductivity using X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and impedance spectroscopy.XRD diffraction patterns confirm a cubic fluorite-type structure with Fm3m space groups in all multi-doped systems.After sintering at 1400℃for 10 h,the relative density of doped samples exceeds 96%.In terms of electrical properties,the Ce_(0.75)Gd_(0.05)Sm_(0.05)Er_(0.05)Y_(0.05)Bi_(0.05)O_(2-δ)(x=0.25)electrolyte exhibits the highest ionic conductivity(σ_(t)=4.45×10^(-2)S/cm)and the lowest activation energy(E_(a)=0.79 eV)at 800℃.The coefficient of thermal expansion of the developed electrolyte aligns well with that of the commonly used electrode materials.This compatibility positions it as a highly promising candidate for utilization as an electrolyte material in solid oxide fuel cells(SOFCs).
文摘The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.
基金supported by the National Natural Science Foundation of China(Nos.22208221,22178221)the Natural Science Foundation of Guangdong Province(Nos.2024A1515011078,2024A1515011507)+1 种基金the Shenzhen Science and Technology Program(Nos.JCYJ20220818095805012,JCYJ20230808105109019)the Start-up Research Funding of Shenzhen University(No.868-000001032522).
文摘The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.
基金National Key R&D Program of China (grant no. 2022YFB3807700)National Natural Science Foundation of China (Grant No. U1964205, U21A2075, 52172253,52102326, 52250610214, 22309194, 52372244)+4 种基金Ningbo S&T Innovation 2025 Major Special Programme (Grant No.2019B10044, 2021Z122, 2023Z106)Zhejiang Provincial Key R&D Program of China (Grant No. 2022C01072, 2024C01095)Jiangsu Provincial S&T Innovation Special Programme for carbon peak and carbon neutrality (Grant No. BE2022007)Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LBMHD24E020001)Youth Innovation Promotion Association CAS (Y2021080)。
文摘Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibility with lithium metal limit their application.Herein,Li_(5.4)PS_(4.4)Cl1.4I0.2solid electrolyte with high ionic conductivity of 11.49 m S ccm^(-1)and improved chemical stability is synthesized by iodine doping.An ultra-thin Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane with thickness of 10μm can be obtained by wet coating process,exhibiting a high ionic conductivity of 2.09 mS ccm^(-1)and low areal resistance of 1.17Ωcm^(-2).Moreover,iodine doping could in-situ form LiI at the lithium/electrolyte interface and improve the critical current density of Li_(5.4)PS_(4.4)Cl_(1.6)from 0.8 to 1.35 mA cm^(-2).The resultant LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)/Li battery shows excellent cycling stability at 1 C,with a reversible specific capacity of 110.1 mA h g^(-1)and a retention of 80.5% after 1000 cycles.In addition,the assembled LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane/Li pouch cell delivers an initial discharge capacity of 110.4 mA h g^(-1)and 80.5% capacity retention after 100 cycles.
基金financial support from the Department of Science and Technology of Jilin Province(20240304104SF,20240304103SF)the Research and Innovation Fund of the Beihua University for the Graduate Student(Major Project 2023012)。
文摘Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.
基金financially supported by the General Research Fund(CityU 11315622 and CityU 11310123)National Natural Science Foundation(NSFC 52372229 and NSFC 52172241)+3 种基金Green Tech Fund(GTF202220105)Guangdong Basic and Applied Basic Research Foundation(2024A1515011008)City University of Hong Kong(No.9020002)the Shenzhen Research Institute of City University of Hong Kong.
文摘The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs.