Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amo...Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amount of Au nanoparticles on the surface of SnO_2 nanorods can effectively enhance and functionalize the gas sensing performance of SnO_2 nanorods,which due to the Au adsorption make the surface-depletion effect more pronounced.Such enhanced surface depletion increases the sensitivity,lowers the operation temperature and decreases the response time.展开更多
A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power ...A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems(MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy(TEM), Raman spectroscopy, x-ray diffraction(XRD), and x-ray photoelectron spectroscopy(XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280℃. The sensor shows excellent selectivity to ethanol.For various ethanol concentrations(1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at280℃ when the relative humidity(RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things(IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed.展开更多
We prepare of ZnO quantum dots embedded in polyvinylpyrrolidone (PVP) matrix and report it’s working as ethanol sensor. The samples have been prepared via quenching technique where bulk ZnO powder is calcined at very...We prepare of ZnO quantum dots embedded in polyvinylpyrrolidone (PVP) matrix and report it’s working as ethanol sensor. The samples have been prepared via quenching technique where bulk ZnO powder is calcined at very high temperature of 1200°C and then quenched into ice cold polyvinylpyrrolidone solution. Thee acteiut the samples specimen have been characterized by using UV/VIS spectroscopy, X-ray diffracttion study and high resolution transmission electron microscopy (HRTEM). These studies indicate the sizes of quantum dots to be within 10 nm. The prepared quantum dot samples have been examined for ethanol vapour sensing by exploring the variation of their resistance with time at different operating temperatures. It has been revealed that ZnO quantum dots can sense ethanol at low operating (230°C) temperature with less response time.展开更多
Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectiv...Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectivity,fast response and recovery,long-term stability or repeatability,a low operating temperature,a facile fabrica-tion process,and versatile applications.This paper reviews the recent advances in gas sensors that are based on MOSHs and the advantages of using them to detect ethanol gas.According to the literature,compared with ethanol gas sen-sors that use single-component sensing materials,the MOSHs exhibit superior performance due to the synergy between the different components,which can amplify the reception and transduction components of the sensor signals.To the best of our knowledge,heterojunctions can be grouped into four main categories as metal oxide/metal oxide,metal oxide/metal sulfide,metal oxide/noble metal,and metal oxide/other materials,including rare-earth metals,g-C_(3)N_(4),and graphene,heterojunctions.The future trends and challenges that would be faced in the development of ethanol gas sensors based on MOSHs are discussed in detail.Finally,critical ideas and thinking regarding the future progress of MOSH-based gas sensors are presented.展开更多
High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra...High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.展开更多
The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center...The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center and ligand, respectively. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy were employed to characterize the synthesized MOF-76 structural features. According to the results, MOF-76 was successfully obtained with minor synthetic modification and its activated form(named TbTMA) was tested as a sensor for methanol. Tb^(3+) luminescence intensity increases as the methanol concentration in ethanol fuel also increases and the water content does not affect this response. Our findings indicate TbTMA as an appropriate sensor for evaluating ethanol fuel adulteration by methanol addition above the allowed limit.展开更多
In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The exper...In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.展开更多
A simple and easy hydrothermal process has been employed to synthesize flower-like ZnO products consisting of numerous orderly oriented and bundled nanorods.The structure and morphology of the novel ZnO structure are ...A simple and easy hydrothermal process has been employed to synthesize flower-like ZnO products consisting of numerous orderly oriented and bundled nanorods.The structure and morphology of the novel ZnO structure are characterized in detail.The flower-like ZnO-nanorod-based gas sensors are investigated for their ethanoi-sensing properties,and the results reveal that the sensors exhibit a high response of 143.6 to 1000 ppm ethanol and good selectivity at the optimal operating temperature of 250℃.The effect of the flower-like morphology on the response of the gas sensors to ethanol is also investigated.展开更多
The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculatio...The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.展开更多
ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission elec...ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission electron microscopy and catalytic chemiluminescence measurement. The ZrO2 nanoparticles with size of several nanometers are uniformly coated on the graphene surface. The chemiluminescence characteristic to ethanol of the as-prepared nanocomposite paper is also investigated. The nanocomposite paper obtained displays high catalytic chemiluminescence sensitivity and highly selectivity to the ethanol gas. This study provides a facile, green and low-cost route to prepare nanoscopic gas sensing devices with application in safe protection, food fermentation, medical process and traffic safe.展开更多
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur...In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.展开更多
Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electro...Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electron microscope,and its gas-sensing performance was measured using a gas-sensor analysis system.The results show that the as-prepared products consist of hexagonal wurtzite ZnO,face-centered cubic gold nanoparticles and orthorhombic Fe2O3crystallines.The Au/Fe2O3-ZnO based sensor has a very high selectivity to ethanol and acetone,and also has high sensitivity(154)at a low working temperature(270°C)and an extremely fast response(1s)against acetone.It is found that the selectivity can be adjusted by Fe2O3content added in the ternary materials.It possesses a worth looking forward prospect to practical applications in acetone detecting and administrating field.展开更多
ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by m...ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by means of differential thermal analysis(DTA), thermal gravimetric analysis(TGA), X-ray diffraction(XRD) and scanning electron microscopy(SEM). The fibers after calcination at 600 °C belong to the hexagonal wurtzite structure. The sensor based on ZnO nanofibers exhibited excellent ethanol sensing properties at 206 °C such as good linear dependence in the low concentration(1―100 μL/L), high response, and good selectivity. Fast response(less than 2 s) and recovery(about 16 s) were also observed in our investigations.展开更多
Sn(OH)4 was prepared by the conventional solution precipitate method,followed by supercritical CO2 drying.The resultant Sn(OH)4 was divided into three aliquots and calcined at 400,600 and 800 °C,respectively,...Sn(OH)4 was prepared by the conventional solution precipitate method,followed by supercritical CO2 drying.The resultant Sn(OH)4 was divided into three aliquots and calcined at 400,600 and 800 °C,respectively,thus SnO2 nanoparticles with average crystallite sizes of 5,10 and 25 nm were obtained.Furthermore,three SnO2 thick film gas sensors(denoted as sensors S-400,S-600 and S-800) were fabricated from the above SnO2 nanoparticles.The adhesion of sensing materials on the surface of alumina tube is good.Compared to the sensors S-600 and S-800,sensor S-400 showed a much higher sensitivity to 1000 μL/L ethanol.On the other hand,sensor S-800 showed a much lower intrinsic resistance and improved selectivity to ethanol than sensors S-400 and S-600.X-Ray diffraction(XRD),transmission electron microscopy(TEM) and selective area electron diffraction(SAED) measurements were used to characterize the SnO2 nanoparticles calcined at different temperatures.The differences in the gas sensing performance of these sensors were analyzed on the basis of scanning electron microscopy(SEM).展开更多
To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style...To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style="font-family:;" "="">as<span style="font-family:;" "=""> prepared by using a simple and inexpensive technique <span style="font-family:;" "="">(<span style="font-family:;" "="">hydrothermal method<span style="font-family:;" "="">)<span style="font-family:;" "=""> without a template. Various confirmatory tests were performed to characterize SnO<sub>2</sub> nanoparticles such as energy<span style="font-family:;" "=""> <span style="font-family:;" "="">dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transition Electron Microscopy (TEM), during the detection of the gas, we found that p<span style="font-family:Verdana;"><span style="font-family:;" "="">ure SnO<sub>2</sub> nanoparticles ha<span style="font-family:;" "="">s<span style="font-family:;" "=""> a high selectivity for ethanol to 100 ppm at a low temperature (180<span style="font-family:;" "="">°C) and a high response (about 27<span style="font-family:;" "=""> <span style="font-family:;" "="">s) and a low detection limit of 5 ppm, also it<span style="color:red;"> h<span style="font-family:;" "="">ave<span style="font-family:" color:red;"=""> <span style="font-family:;" "="">response/recovery times about (4<span style="font-family:;" "=""> <span style="font-family:;" "="">s, 2<span style="font-family:;" "=""> <span style="font-family:;" "="">s) respectively. The distinctive sensing properties of SnO<sub>2</sub> sensor make it a promising candidate for ethanol detection. Furthermore, the gas-sensing mechanism have been examined.展开更多
文摘Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amount of Au nanoparticles on the surface of SnO_2 nanorods can effectively enhance and functionalize the gas sensing performance of SnO_2 nanorods,which due to the Au adsorption make the surface-depletion effect more pronounced.Such enhanced surface depletion increases the sensitivity,lowers the operation temperature and decreases the response time.
基金Project supported by the Research Foundation of Hangzhou Dianzi University,China2011 Zhejiang Regional Collaborative Innovation Center for Smart City,China
文摘A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems(MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy(TEM), Raman spectroscopy, x-ray diffraction(XRD), and x-ray photoelectron spectroscopy(XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280℃. The sensor shows excellent selectivity to ethanol.For various ethanol concentrations(1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at280℃ when the relative humidity(RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things(IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed.
文摘We prepare of ZnO quantum dots embedded in polyvinylpyrrolidone (PVP) matrix and report it’s working as ethanol sensor. The samples have been prepared via quenching technique where bulk ZnO powder is calcined at very high temperature of 1200°C and then quenched into ice cold polyvinylpyrrolidone solution. Thee acteiut the samples specimen have been characterized by using UV/VIS spectroscopy, X-ray diffracttion study and high resolution transmission electron microscopy (HRTEM). These studies indicate the sizes of quantum dots to be within 10 nm. The prepared quantum dot samples have been examined for ethanol vapour sensing by exploring the variation of their resistance with time at different operating temperatures. It has been revealed that ZnO quantum dots can sense ethanol at low operating (230°C) temperature with less response time.
基金financially supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (No.2021H1D3A2A01100019)the National Natural Science Foundation of China (No.62074057)+2 种基金Projects of Science and Technology Commission of Shanghai Municipality (Nos.19ZR1473800 and 18DZ2270800)the Open Research Projects of Zhejiang Lab (No.2021MCOAB06)the Postdoctoral Scientific Research Foundation of Qingdao
文摘Metal oxide semiconductor heterojunctions(MOSHs)can enhance the performance of ethanol gas sen-sors substantially.Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response,good selectivity,fast response and recovery,long-term stability or repeatability,a low operating temperature,a facile fabrica-tion process,and versatile applications.This paper reviews the recent advances in gas sensors that are based on MOSHs and the advantages of using them to detect ethanol gas.According to the literature,compared with ethanol gas sen-sors that use single-component sensing materials,the MOSHs exhibit superior performance due to the synergy between the different components,which can amplify the reception and transduction components of the sensor signals.To the best of our knowledge,heterojunctions can be grouped into four main categories as metal oxide/metal oxide,metal oxide/metal sulfide,metal oxide/noble metal,and metal oxide/other materials,including rare-earth metals,g-C_(3)N_(4),and graphene,heterojunctions.The future trends and challenges that would be faced in the development of ethanol gas sensors based on MOSHs are discussed in detail.Finally,critical ideas and thinking regarding the future progress of MOSH-based gas sensors are presented.
基金This work is supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004,LAPS202114)National Natural Science Foundation of China(Nos.52272200,51972110,52102245 and 52072121)+6 种基金Beijing Science and Technology Project(No.Z211100004621010)Beijing Natural Science Foundation(Nos.2222076,2222077)Hebei Natural Science Foundation(No.E2022502022)Huaneng Group Headquarters Science and Technology Project(No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation(No.2022M721129)the Fundamental Research Funds for the Central Universities(Nos.2022MS030,2021MS028,2020MS023,2020MS028)the NCEPU“Double First-Class”Program.This research was also supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2021H1D3A2A01100019).
文摘High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.
基金the Brazilian agencies FAPES (Fundacao de Amparo a Pesquisa do Estado do Espirito Santo)FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) for financial scholarship
文摘The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center and ligand, respectively. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy were employed to characterize the synthesized MOF-76 structural features. According to the results, MOF-76 was successfully obtained with minor synthetic modification and its activated form(named TbTMA) was tested as a sensor for methanol. Tb^(3+) luminescence intensity increases as the methanol concentration in ethanol fuel also increases and the water content does not affect this response. Our findings indicate TbTMA as an appropriate sensor for evaluating ethanol fuel adulteration by methanol addition above the allowed limit.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574026 and 11405017)the Liaoning Provincial Natural Science Foundation,China(Grant No.201602453)
文摘In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.
基金Project supported by the National Innovation Experiment Program for University Students(Nos.2009C65125,2010C65188)the Jilin Provincial Science and Technology Department(No.20100344)the Jilin Environment Office(No.2009-22)
文摘A simple and easy hydrothermal process has been employed to synthesize flower-like ZnO products consisting of numerous orderly oriented and bundled nanorods.The structure and morphology of the novel ZnO structure are characterized in detail.The flower-like ZnO-nanorod-based gas sensors are investigated for their ethanoi-sensing properties,and the results reveal that the sensors exhibit a high response of 143.6 to 1000 ppm ethanol and good selectivity at the optimal operating temperature of 250℃.The effect of the flower-like morphology on the response of the gas sensors to ethanol is also investigated.
文摘The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.
文摘ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission electron microscopy and catalytic chemiluminescence measurement. The ZrO2 nanoparticles with size of several nanometers are uniformly coated on the graphene surface. The chemiluminescence characteristic to ethanol of the as-prepared nanocomposite paper is also investigated. The nanocomposite paper obtained displays high catalytic chemiluminescence sensitivity and highly selectivity to the ethanol gas. This study provides a facile, green and low-cost route to prepare nanoscopic gas sensing devices with application in safe protection, food fermentation, medical process and traffic safe.
基金supported by the National Basic Research Priorities Program of China (No.2007CB936601)the National Natural Science Foundation of China (Nos.10876017 and 91023037)
文摘In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.
基金Project(30916014103) supported by the Fundamental Research Funds for the Central Universities,China
文摘Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process.The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electron microscope,and its gas-sensing performance was measured using a gas-sensor analysis system.The results show that the as-prepared products consist of hexagonal wurtzite ZnO,face-centered cubic gold nanoparticles and orthorhombic Fe2O3crystallines.The Au/Fe2O3-ZnO based sensor has a very high selectivity to ethanol and acetone,and also has high sensitivity(154)at a low working temperature(270°C)and an extremely fast response(1s)against acetone.It is found that the selectivity can be adjusted by Fe2O3content added in the ternary materials.It possesses a worth looking forward prospect to practical applications in acetone detecting and administrating field.
基金Supported by the National High-Tech Research and Development Program of China(No.2009AA03Z402)the National Natural Science Foundation of China(Nos.60977031, 50977038)the Doctoral Fund of Ministry of Education of China(No.20090061110040)
文摘ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by means of differential thermal analysis(DTA), thermal gravimetric analysis(TGA), X-ray diffraction(XRD) and scanning electron microscopy(SEM). The fibers after calcination at 600 °C belong to the hexagonal wurtzite structure. The sensor based on ZnO nanofibers exhibited excellent ethanol sensing properties at 206 °C such as good linear dependence in the low concentration(1―100 μL/L), high response, and good selectivity. Fast response(less than 2 s) and recovery(about 16 s) were also observed in our investigations.
基金Supported by the National Natural Science Foundation of China(No.60906008)the Foundation for Excellent Middle-aged or Young Scientists from Shandong Province of China(No.BS2010CL007)
文摘Sn(OH)4 was prepared by the conventional solution precipitate method,followed by supercritical CO2 drying.The resultant Sn(OH)4 was divided into three aliquots and calcined at 400,600 and 800 °C,respectively,thus SnO2 nanoparticles with average crystallite sizes of 5,10 and 25 nm were obtained.Furthermore,three SnO2 thick film gas sensors(denoted as sensors S-400,S-600 and S-800) were fabricated from the above SnO2 nanoparticles.The adhesion of sensing materials on the surface of alumina tube is good.Compared to the sensors S-600 and S-800,sensor S-400 showed a much higher sensitivity to 1000 μL/L ethanol.On the other hand,sensor S-800 showed a much lower intrinsic resistance and improved selectivity to ethanol than sensors S-400 and S-600.X-Ray diffraction(XRD),transmission electron microscopy(TEM) and selective area electron diffraction(SAED) measurements were used to characterize the SnO2 nanoparticles calcined at different temperatures.The differences in the gas sensing performance of these sensors were analyzed on the basis of scanning electron microscopy(SEM).
文摘To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style="font-family:;" "="">as<span style="font-family:;" "=""> prepared by using a simple and inexpensive technique <span style="font-family:;" "="">(<span style="font-family:;" "="">hydrothermal method<span style="font-family:;" "="">)<span style="font-family:;" "=""> without a template. Various confirmatory tests were performed to characterize SnO<sub>2</sub> nanoparticles such as energy<span style="font-family:;" "=""> <span style="font-family:;" "="">dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transition Electron Microscopy (TEM), during the detection of the gas, we found that p<span style="font-family:Verdana;"><span style="font-family:;" "="">ure SnO<sub>2</sub> nanoparticles ha<span style="font-family:;" "="">s<span style="font-family:;" "=""> a high selectivity for ethanol to 100 ppm at a low temperature (180<span style="font-family:;" "="">°C) and a high response (about 27<span style="font-family:;" "=""> <span style="font-family:;" "="">s) and a low detection limit of 5 ppm, also it<span style="color:red;"> h<span style="font-family:;" "="">ave<span style="font-family:" color:red;"=""> <span style="font-family:;" "="">response/recovery times about (4<span style="font-family:;" "=""> <span style="font-family:;" "="">s, 2<span style="font-family:;" "=""> <span style="font-family:;" "="">s) respectively. The distinctive sensing properties of SnO<sub>2</sub> sensor make it a promising candidate for ethanol detection. Furthermore, the gas-sensing mechanism have been examined.