The density functional theory and the cluster model methods have been employed to investigate the interactions between ethanethiol and HZSM-5 zeolites. Molecular complexes formed by the adsorption of ethanethiol on si...The density functional theory and the cluster model methods have been employed to investigate the interactions between ethanethiol and HZSM-5 zeolites. Molecular complexes formed by the adsorption of ethanethiol on silanol H3SiOH with two coordination forms, model Bronsted acid sites of zeolite cluster H3Si(OH)Al(OH)2SiH3 interaction with ethanethiol, aluminum species adsorbed ethanethiol have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using B3LYP hybrid method at 3-21G basis level for hydrogen atoms and 6-31G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms of H3Si(OH)Al(OH)2SiH3-ethanethiol, silanol-ethanethiol and Al(OH)3-ethanethiol have been studied. The calculated results showed the nature of interactions was van der Waals force as exhibited by not much change in geometric structures and properties. The preference order of ethanethiol adsorbed on HZSM-5 zeolite may be residual aluminum species, bridging hydroxyl groups and silanol OH groups from the adsorption heat. The adsorbed models of protonized ethanethiol on bridging hydroxyl OH groups and linear hydrogen bonded ethanethiol on bridging OH groups suggested in literature might not exist as revealed by this theoretical calculation. Possible adsorption models were obtained for the first time.展开更多
The binding energy spectra and electron momentum distributions for the complete valence orbitals of ethanethiol were measured for the first time by binary (e, 2e) electron momentum spectroscopy employing non-coplana...The binding energy spectra and electron momentum distributions for the complete valence orbitals of ethanethiol were measured for the first time by binary (e, 2e) electron momentum spectroscopy employing non-coplanar symmetric kinematics at an impact energy of 1200 eV plus binding energy. The experimental results are generally consistent with the theoretical calculations using density functional theory and Hartree-Fock methods with various basis sets. A possible satellite line at 17.8 eV in binding energy spectrum was observed and studied by electron momentum spectroscopy.展开更多
The desulfurization of model gasoline by 5A molecular sieves loaded with Cu2+ was studied.Several factors which influence the desulfurization capability,including temperature,Cu2+ loading,baking temperature,as well as...The desulfurization of model gasoline by 5A molecular sieves loaded with Cu2+ was studied.Several factors which influence the desulfurization capability,including temperature,Cu2+ loading,baking temperature,as well as the ethanethiol concentration were investigated.In the range of adsorption temperature of 20℃45℃,it was found that the sorption capacity of ethanethiol on 5A molecular sieves loaded with Cu2+ increases with the temperature increasing.The desulfurization is enhanced by increasing the Cu2+ loading and the best result is obtained at the Cu2+ loading of 0.16mol/L.Baking of the sorbent can also improve the desulfurization capability,and the optimum baking temperature is 300℃.Two methods of the sorbent regeneration were compared in the experiment,the regeneration by baking is better than that by alcohol washing.展开更多
Strain Jll screened out from different odor origins can efficiently degrade methyl mercaptan and ethanethiol whereas has no ability to remove dimethyl sulfide. The results indicated that the strain Jll breaks only the...Strain Jll screened out from different odor origins can efficiently degrade methyl mercaptan and ethanethiol whereas has no ability to remove dimethyl sulfide. The results indicated that the strain Jll breaks only the C-SH bond. The optimum temperature and pH of Jll are 20—30℃ and 6.0—8.3 respectively. A systematic identification method—16S rDNA gene sequence comparison, for deodorizing bacteria was carried out. The 16S rDNA gene sequence analysis of strain Jll showed the highest level of 97% homology to Rape rhizosphere.展开更多
文摘The density functional theory and the cluster model methods have been employed to investigate the interactions between ethanethiol and HZSM-5 zeolites. Molecular complexes formed by the adsorption of ethanethiol on silanol H3SiOH with two coordination forms, model Bronsted acid sites of zeolite cluster H3Si(OH)Al(OH)2SiH3 interaction with ethanethiol, aluminum species adsorbed ethanethiol have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using B3LYP hybrid method at 3-21G basis level for hydrogen atoms and 6-31G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms of H3Si(OH)Al(OH)2SiH3-ethanethiol, silanol-ethanethiol and Al(OH)3-ethanethiol have been studied. The calculated results showed the nature of interactions was van der Waals force as exhibited by not much change in geometric structures and properties. The preference order of ethanethiol adsorbed on HZSM-5 zeolite may be residual aluminum species, bridging hydroxyl groups and silanol OH groups from the adsorption heat. The adsorbed models of protonized ethanethiol on bridging hydroxyl OH groups and linear hydrogen bonded ethanethiol on bridging OH groups suggested in literature might not exist as revealed by this theoretical calculation. Possible adsorption models were obtained for the first time.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10734040) and the Foundation for Major Research Program of Education Department of Anhui Province (No.ZD2007002-1).
文摘The binding energy spectra and electron momentum distributions for the complete valence orbitals of ethanethiol were measured for the first time by binary (e, 2e) electron momentum spectroscopy employing non-coplanar symmetric kinematics at an impact energy of 1200 eV plus binding energy. The experimental results are generally consistent with the theoretical calculations using density functional theory and Hartree-Fock methods with various basis sets. A possible satellite line at 17.8 eV in binding energy spectrum was observed and studied by electron momentum spectroscopy.
文摘The desulfurization of model gasoline by 5A molecular sieves loaded with Cu2+ was studied.Several factors which influence the desulfurization capability,including temperature,Cu2+ loading,baking temperature,as well as the ethanethiol concentration were investigated.In the range of adsorption temperature of 20℃45℃,it was found that the sorption capacity of ethanethiol on 5A molecular sieves loaded with Cu2+ increases with the temperature increasing.The desulfurization is enhanced by increasing the Cu2+ loading and the best result is obtained at the Cu2+ loading of 0.16mol/L.Baking of the sorbent can also improve the desulfurization capability,and the optimum baking temperature is 300℃.Two methods of the sorbent regeneration were compared in the experiment,the regeneration by baking is better than that by alcohol washing.
文摘Strain Jll screened out from different odor origins can efficiently degrade methyl mercaptan and ethanethiol whereas has no ability to remove dimethyl sulfide. The results indicated that the strain Jll breaks only the C-SH bond. The optimum temperature and pH of Jll are 20—30℃ and 6.0—8.3 respectively. A systematic identification method—16S rDNA gene sequence comparison, for deodorizing bacteria was carried out. The 16S rDNA gene sequence analysis of strain Jll showed the highest level of 97% homology to Rape rhizosphere.