Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations(2–30 N)of NaOH-based etchant.Critical analysis and a deep discussion of the results are presented.A comprehensive nuclear t...Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations(2–30 N)of NaOH-based etchant.Critical analysis and a deep discussion of the results are presented.A comprehensive nuclear track chemical etching data bank was developed.Three regimes of CR-39 bulk etching were identified.Regime I spans etchant concentrations from 2 to 12 N.Regime II spans concentrations from 12 to 25 N.We call this the dynamic bulk etching regime.Regime III is for concentrations greater than 25 N.In this regime,the bulk etch rate is saturated with respect to the etchant concentration.This classification is discussed and explained.The role of ethanol in NaOH-based etchants is explored and discussed.A parameter called the “reduced bulk etch rate” is defined here,which helps in analyzing the dependence of bulk etching on the amount of ethanol in the etchant.The bulk etch rate shows a natural logarithmic dependence on the density of ethanol in the etchant.展开更多
In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this ...In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this SSNTD, were determined by measuring the average initial thickness (before etching) and residual thickness after 80 to 135 minutes chemical etching in the standard conditions, using an electronic comparator. These results allowed the calculation of the bulk etch rate of this detector in a simple way. The mean value obtained is (3.21 ± 0.21) μm/h. This value is in close agreement with those reported by different authors. It is an important parameter for alpha track counting on the sensitive surface of this polymeric detector after chemical etching because track density depends extremely on its removed layer. This SSNTD was then used for environmental radon gas monitoring in Côte d’Ivoire.展开更多
The present work measured the bulk etch rate (VB?) of solid state nuclear track detector by taking the diameter time measurement of alpha particle in CR-39 detector. The values of the track diameter have been found by...The present work measured the bulk etch rate (VB?) of solid state nuclear track detector by taking the diameter time measurement of alpha particle in CR-39 detector. The values of the track diameter have been found by using TRACK-TEST program from Yu et al. function and Brun et al. function with different energies of alpha particles. The results showed that the time-diameter (t-d) method gave good results of the bulk etch rate (VB?) and these values were (1.705 and 1.72) μm·hr-1. They showed good agreement with the values measured by using the other methods, and it was a simple method because it required getting diameters of the tracks in the detector with the etching time.展开更多
The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and...The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiNx:H by HF solution. A low etch rate was achieved by increasing the SiH4 gas flow rate or annealing temperature, or decreasing the NH3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for Sit2 and SiNx:H. A high etching selectivity of Sit2 over SiNx:H was obtained using highly concentrated buffered HE展开更多
HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, i...HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, is studied. The error of etching rate between the existing model and the exmodel considering the diffusion coefficient as a function of HF concentration and temperature is proposed. The etching rate coefficient as a function of temperature and the effect of reaction production are also considered in the modified model. For the joint-channel structure, a new mathematical model for the etching profile is also adopted. Experimental data obtained with channel, bubble, and joint-channel structures are compared with the modified model and the previous model. The results show that the modified model matches the experiments well.展开更多
Dry etching has now become one of the key processes of high ratio of depth to width microstructure and fine patterning. This paper presents a new dry etching technology - multilayer reactive ion etching technology (M...Dry etching has now become one of the key processes of high ratio of depth to width microstructure and fine patterning. This paper presents a new dry etching technology - multilayer reactive ion etching technology (MRIE). By taking full advantage of the spatial layout of the chamber, arranging multi-layer electrodes and transporting the discharged gas by a layered air supply device, the function of simultaneous etching in every reaction chamber (layer) is realized. This method can significantly enhance the productivity. Taking the photoresist etching by MRIE as an example, the law and mechanism influencing the etching rate and uniformity were analyzed for different conditions. The result shows that when plate distance is 50/55/60 mm (from bottom to top), and vacuum degree, ratio of O2 to Ar, RF source power, and continuous etching time are respectively 40 Pa, 1/2, 600 W, and 20 min, the optimal process is achieved. The average etching rate and uniformity are 143.93 A/min and 9.8%, respectively.展开更多
An optimal concentration of the etching solution for deep etching of silicon, including 3% tetramethyl ammonium hydroxide and 0.3% (NH4)2S2O8, was achieved in this paper. For this etching solution, the etching rates o...An optimal concentration of the etching solution for deep etching of silicon, including 3% tetramethyl ammonium hydroxide and 0.3% (NH4)2S2O8, was achieved in this paper. For this etching solution, the etching rates of silicon and silicon dioxide were about 1.1μm·min-1 and 0.5nm·min-1, respectively. The etching ratio between (100) and (111) planes was about 34:1, and the etched surface was very smooth.展开更多
Dust-plasma interactions play vital roles in numerous observed phenomena in the space environment, their scope in the industrial laboratory has grown rapidly in recent times to include such diverse areas as materials ...Dust-plasma interactions play vital roles in numerous observed phenomena in the space environment, their scope in the industrial laboratory has grown rapidly in recent times to include such diverse areas as materials processing, microelectronics, lighting and nuclear fusion. The etching processes of Si wafer has been studied using Ultra low frequency RF plasma (ULFP) at (1 KHz) by two different techniques namely: ion etching using inert gas only (e.g., argon gas), and ion chemical etching using an active gas (beside the inert gas) such as oxygen. In the case of large dust particle, the dust might act as a floating body in the plasma collecting equal fluxes of electrons and ions. The velocity of the ions flux out from the mesh (cathode) and cause ion sputtering for the sample (Si-Wafer) measured, moreover the rate coefficient for collection of electrons and ions by dust (K) is calculated here, the presence of dust, however, may itself cause loss process. As the plasma density increases, the etching rate increases and the volumetric rate of loss of electron and ions due to dust particle increases (K). A comparison between the volumetric rate of loss (K) due to ion chemical etching (75% Ar/25% O2) and ion etching (Pure Ar) has been carried out.展开更多
文摘Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations(2–30 N)of NaOH-based etchant.Critical analysis and a deep discussion of the results are presented.A comprehensive nuclear track chemical etching data bank was developed.Three regimes of CR-39 bulk etching were identified.Regime I spans etchant concentrations from 2 to 12 N.Regime II spans concentrations from 12 to 25 N.We call this the dynamic bulk etching regime.Regime III is for concentrations greater than 25 N.In this regime,the bulk etch rate is saturated with respect to the etchant concentration.This classification is discussed and explained.The role of ethanol in NaOH-based etchants is explored and discussed.A parameter called the “reduced bulk etch rate” is defined here,which helps in analyzing the dependence of bulk etching on the amount of ethanol in the etchant.The bulk etch rate shows a natural logarithmic dependence on the density of ethanol in the etchant.
文摘In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this SSNTD, were determined by measuring the average initial thickness (before etching) and residual thickness after 80 to 135 minutes chemical etching in the standard conditions, using an electronic comparator. These results allowed the calculation of the bulk etch rate of this detector in a simple way. The mean value obtained is (3.21 ± 0.21) μm/h. This value is in close agreement with those reported by different authors. It is an important parameter for alpha track counting on the sensitive surface of this polymeric detector after chemical etching because track density depends extremely on its removed layer. This SSNTD was then used for environmental radon gas monitoring in Côte d’Ivoire.
文摘The present work measured the bulk etch rate (VB?) of solid state nuclear track detector by taking the diameter time measurement of alpha particle in CR-39 detector. The values of the track diameter have been found by using TRACK-TEST program from Yu et al. function and Brun et al. function with different energies of alpha particles. The results showed that the time-diameter (t-d) method gave good results of the bulk etch rate (VB?) and these values were (1.705 and 1.72) μm·hr-1. They showed good agreement with the values measured by using the other methods, and it was a simple method because it required getting diameters of the tracks in the detector with the etching time.
基金Project supported by the National High Technology Research and Development Program of China (No.2007AA04Z322)the State Key Development Program for Basic Research of China (No.2009CB320305)the Hundred Talents Plan of Chinese Academy of Sciences
文摘The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiNx:H by HF solution. A low etch rate was achieved by increasing the SiH4 gas flow rate or annealing temperature, or decreasing the NH3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for Sit2 and SiNx:H. A high etching selectivity of Sit2 over SiNx:H was obtained using highly concentrated buffered HE
文摘HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, is studied. The error of etching rate between the existing model and the exmodel considering the diffusion coefficient as a function of HF concentration and temperature is proposed. The etching rate coefficient as a function of temperature and the effect of reaction production are also considered in the modified model. For the joint-channel structure, a new mathematical model for the etching profile is also adopted. Experimental data obtained with channel, bubble, and joint-channel structures are compared with the modified model and the previous model. The results show that the modified model matches the experiments well.
文摘Dry etching has now become one of the key processes of high ratio of depth to width microstructure and fine patterning. This paper presents a new dry etching technology - multilayer reactive ion etching technology (MRIE). By taking full advantage of the spatial layout of the chamber, arranging multi-layer electrodes and transporting the discharged gas by a layered air supply device, the function of simultaneous etching in every reaction chamber (layer) is realized. This method can significantly enhance the productivity. Taking the photoresist etching by MRIE as an example, the law and mechanism influencing the etching rate and uniformity were analyzed for different conditions. The result shows that when plate distance is 50/55/60 mm (from bottom to top), and vacuum degree, ratio of O2 to Ar, RF source power, and continuous etching time are respectively 40 Pa, 1/2, 600 W, and 20 min, the optimal process is achieved. The average etching rate and uniformity are 143.93 A/min and 9.8%, respectively.
文摘An optimal concentration of the etching solution for deep etching of silicon, including 3% tetramethyl ammonium hydroxide and 0.3% (NH4)2S2O8, was achieved in this paper. For this etching solution, the etching rates of silicon and silicon dioxide were about 1.1μm·min-1 and 0.5nm·min-1, respectively. The etching ratio between (100) and (111) planes was about 34:1, and the etched surface was very smooth.
文摘Dust-plasma interactions play vital roles in numerous observed phenomena in the space environment, their scope in the industrial laboratory has grown rapidly in recent times to include such diverse areas as materials processing, microelectronics, lighting and nuclear fusion. The etching processes of Si wafer has been studied using Ultra low frequency RF plasma (ULFP) at (1 KHz) by two different techniques namely: ion etching using inert gas only (e.g., argon gas), and ion chemical etching using an active gas (beside the inert gas) such as oxygen. In the case of large dust particle, the dust might act as a floating body in the plasma collecting equal fluxes of electrons and ions. The velocity of the ions flux out from the mesh (cathode) and cause ion sputtering for the sample (Si-Wafer) measured, moreover the rate coefficient for collection of electrons and ions by dust (K) is calculated here, the presence of dust, however, may itself cause loss process. As the plasma density increases, the etching rate increases and the volumetric rate of loss of electron and ions due to dust particle increases (K). A comparison between the volumetric rate of loss (K) due to ion chemical etching (75% Ar/25% O2) and ion etching (Pure Ar) has been carried out.