期刊文献+
共找到6,611篇文章
< 1 2 250 >
每页显示 20 50 100
785 nm semiconductor laser with shallow etched gratings
1
作者 YUE Yu-xin ZOU Yong-gang +5 位作者 FAN Jie FU Xi-yao ZHANG Nai-yu SONG Ying-min HUANG Zhuo-er MA Xiao-hui 《中国光学(中英文)》 北大核心 2025年第4期931-946,共16页
A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etchin... A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etching depth.Thinning of the p-side waveguide layer makes the light field bias to the n-side cladding layer.By coordinating the confinement effect of the cladding layer,the light confinement factor on the p-side is regulated.On the other hand,the introduction of a mode expansion layer facilitates the expansion of the mode profile on the p side cladding layer.Both these factors contribute positively to reducing the grating etching depth.Compared to the reported epitaxial structures of symmetric waveguides,the new structure significantly reduces the etching depth of the grating while ensuring adequate reflection intensity and maintaining resonance.Moreover,to improve the output performance of the device,the new epitaxial structure has been optimized.Based on the traditional epitaxial structure,an energy release layer and an electron blocking layer are added to improve the electronic recombination efficiency.This improved structure has an output performance comparable to that of a symmetric waveguide,despite being able to have a smaller gain area. 展开更多
关键词 surface grating etching depth epitaxial structure recombination efficiency gain area
在线阅读 下载PDF
Dislocation and Wet Etching of Lu_(2)O_(3)
2
作者 LI Guoxin WANG Pei +3 位作者 MU Wenxiang ZHAO Lili WANG Shanpeng YIN Yanru 《发光学报》 北大核心 2025年第6期1095-1108,共14页
Lutetium oxide(Lu_(2)O_(3))is recognized as a potential laser crystal material,and it is noted for its high ther⁃mal conductivity,low phonon energy,and strong crystal field.Nevertheless,its high melting point of 2450... Lutetium oxide(Lu_(2)O_(3))is recognized as a potential laser crystal material,and it is noted for its high ther⁃mal conductivity,low phonon energy,and strong crystal field.Nevertheless,its high melting point of 2450℃induces significant temperature gradients,resulting in a proliferation of defects.The scarcity of comprehensive research on this crystal’s defects hinders the enhancement of crystal quality.In this study,we employed the chemical etching method to examine the etching effects on Lu_(2)O_(3)crystals under various conditions and to identify the optimal conditions for investi⁃gating the dislocation defects of Lu_(2)O_(3)crystals(mass fraction 70%H3PO4,160℃,15-18 min).The morphologies of dislocation etch pits on the(111)-and(110)-oriented Lu_(2)O_(3)wafers were characterized using microscopy,scanning electron microscopy and atomic force microscopy.This research addresses the gap in understanding Lu_(2)O_(3)line defects and offers guidance for optimizing the crystal growth process and improving crystal quality. 展开更多
关键词 Lu_(2)O_(3) etch pit dislocations crystal defects
在线阅读 下载PDF
Central Indian Ocean Basin micrometeorite collections:Type,flux,etching and its implication to ocean biogeochemistry
3
作者 N.G.Rudraswami V.P.Singh K.T.Basil Saleem 《Geoscience Frontiers》 2025年第4期261-272,共12页
Extraterrestrial phenomena have influenced Earth’s processes throughout geological history.Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and... Extraterrestrial phenomena have influenced Earth’s processes throughout geological history.Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and life.This study incorporates the investigation of micrometeorites(MMs),abundant cosmic materials on Earth,to understand their influence on the chemical composition and biogeochemistry of the ocean.Comprehensive etching and flux analyses reveal that∼95%of cosmic spherules(CSs)entering seawater are etched or wholly dissolved,supplying nutrients to phytoplankton.Barred spherules show the highest degree of etching(∼19%),followed by porphyritic(∼17%),glass(∼15%),cryptocrystalline(∼12%),scoriaceous(∼10%),G-type(∼9%),and I-type(∼6%).Annually,∼3080 tonnes(t)of olivine from MMs dissolve into seawater,contributing∼495 t of Mg^(2+),∼1110 t of Fe^(2+),and∼1928 t of silicic acid.This signifies that over the Indian Ocean’s∼40 Myr history,∼23 Gt of olivine from CSs has dissolved,providing nutrients to seawater and sequestering∼7 Gt of CO_(2).The world ocean during this time has sequestered∼35 Gt of CO_(2),with fluctuations influenced by extraterrestrial activity.For instance,the Veritas event,lasting∼1.5 Myr,sequestered∼6 Gt of CO_(2)from the atmosphere.A robust flux calculation based on∼2 t of deep-sea sediments from 3610 MMs provides a more accurate estimate of the time-averaged flux of∼229 t yr^(−1).These comprehensive analyses reveal MM’s original characteristics,post-deposition processes,geological record and their overall impact on Earth’s marine environments,thereby contributing to our knowledge of the interconnection between terrestrial and extraterrestrial processes. 展开更多
关键词 Cosmic spherules MICROMETEORITES DEEP-SEA etchING Central Indian Ocean Basin FLUX
在线阅读 下载PDF
Towards atomic-scale smooth surface manufacturing of β-Ga_(2)O_(3)via highly efficient atmospheric plasma etching
4
作者 Yongjie Zhang Yuxi Xiao +2 位作者 Jianwen Liang Chun Zhang Hui Deng 《International Journal of Extreme Manufacturing》 2025年第1期482-502,共21页
The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method na... The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method named plasma-based atom-selective etching(PASE)is proposed to achieve the highly efficient,atomic-scale,and damage-free polishing of β-Ga_(2)O_(3).The plasma is excited through the inductive coupling principle and carbon tetrafluoride is utilized as the main reaction gas to etch β-Ga_(2)O_(3).The core of PASE polishing of β-Ga_(2)O_(3)is the remarkable lateral etching effect,which is ensured by both the intrinsic property of the surface and the extrinsic temperature condition.As revealed by density functional theory-based calculations,the intrinsic difference in the etching energy barrier of atoms at the step edge(2.36 eV)and in the terrace plane(4.37 eV)determines their difference in the etching rate,and their etching rate difference can be greatly enlarged by increasing the extrinsic temperature.The polishing of β-Ga_(2)O_(3)based on the lateral etching effect is further verified in the etching experiments.The Sa roughness of β-Ga_(2)O_(3)(001)substrate is reduced from 14.8 nm to 0.057 nm within 120 s,and the corresponding material removal rate reaches up to 20.96μm·min^(−1).The polished β-Ga_(2)O_(3)displays significantly improved crystalline quality and photoluminescence intensity,and the polishing effect of PASE is independent of the crystal face of β-Ga_(2)O_(3).In addition,the competition between chemical etching and physical reconstruction,which is determined by temperature and greatly affects the surface state of β-Ga_(2)O_(3),is deeply studied for the first time.These findings not only demonstrate the high-efficiency and high-quality polishing of β-Ga_(2)O_(3)via atmospheric plasma etching but also hold significant implications for guiding future plasma-based surface manufacturing of β-Ga_(2)O_(3). 展开更多
关键词 atmospheric plasma plasma etching atomic-scale polishing gallium oxide next-generation semiconductor
在线阅读 下载PDF
Recovery and regeneration of waste liquid from stainless steel etching process
5
作者 Wen-ran Xia Qing Zhao +3 位作者 Meng-jie Tao Chao Jiang Henrik Saxén Ron Zevenhoven 《Journal of Iron and Steel Research International》 2025年第10期3644-3656,共13页
FeCl_(3) solution is commonly used in the etching process of stainless steel.The typical etching waste liquid contains a significant amount of Fe^(3+),Fe^(2+),Cr^(3+),and Ni^(2+),making it difficult to reuse and posin... FeCl_(3) solution is commonly used in the etching process of stainless steel.The typical etching waste liquid contains a significant amount of Fe^(3+),Fe^(2+),Cr^(3+),and Ni^(2+),making it difficult to reuse and posing pollution issues.The FeCl_(3) etching waste liquid was the present subject,which aimed to extract Cr^(3+)and Ni^(2+)by selectively adjusting process parameters.Additionally,it investigates the migration behavior and phase transition mechanisms of the iron,chromium,and nickel in different solution systems during treatment,systematically elucidating the regeneration mechanisms of FeCl_(3) etching waste liquid.The results indicate that Cr and Ni can be recycled by controlling parameters such as pH value,temperature,and the valence states of the ions.Following a selective reduction of Fe^(3+)to Fe^(2+)using Fe powder,98.3%of Cr^(3+)was recovered by adjusting the solution’s pH.Subsequently,93.3%of Ni^(2+)was extracted from the Cr-depleted solution through further adjustments to the process parameters.The recovered Cr and Ni can be used to prepare Fe–Cr and Fe–Ni alloy powders.Furthermore,the FeCl_(3) etching solution was regenerated by oxidizing Fe^(2+)and recovering impurities.The theoretical support for the development of new processes for treating FeCl_(3) etching waste liquid is provided. 展开更多
关键词 Stainless steel etching solution Cr recovery Ni recovery Liquid waste regeneration
原文传递
Ultralong discharge time enabled using etched germanium anodes in germanium-air batteries
6
作者 Ya Han Yingjian Yu 《Chinese Chemical Letters》 2025年第7期603-607,共5页
Germanium(Ge)-air battery,a new type of semiconductor-air battery,has garnered increasing attention owing to its environmental friendliness,safety,and excellent dynamic performance.However,the flat Ge anode is prone t... Germanium(Ge)-air battery,a new type of semiconductor-air battery,has garnered increasing attention owing to its environmental friendliness,safety,and excellent dynamic performance.However,the flat Ge anode is prone to passivation,owing to GeO_(2) accumulation on its surface,resulting in premature discharge termination.In this study,various nano-Ge pyramid structures(GePS)were prepared using chemical etching(CE)and metal-assisted chemical etching(MACE)methods to enhance the specific surface area of the Ge anode,thereby facilitating the dissolution of the passivation layer.This study revealed that the MACE method significantly accelerated the etching rate of the Ge surface,producing exceptional GePS.Furthermore,Ge-air batteries employing Ge anodes prepared using MACE demonstrated an exceptional discharge life of up to 9240 h(385 days).The peak power density reached 3.03mW/cm^(2),representing improvements of more than 2 times and 1.8 times,respectively,compared with batteries using flat Ge anodes.This study presents a straightforward approach to enhance Ge anode performance,thereby expanding the potential applications of Ge-air batteries. 展开更多
关键词 Ge-air battery Ultralong discharge time PASSIVATION Metal-assisted chemical etching Pyramid structure
原文传递
Manipulating Heterogeneous Surface/Interface Reconstruction of Nickel Molybdate Nanofiber by In Situ Prussian Blue Analogs Etching Strategy for Oxygen Evolution
7
作者 Xinyao Ding Lirong Zhang +2 位作者 Peng Yu Ruibai Cang Mingyi Zhang 《Energy & Environmental Materials》 2025年第3期199-207,共9页
Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a on... Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency. 展开更多
关键词 in situ etching NANOFIBER NiMoO_(4) OER Prussian Blue Analog
在线阅读 下载PDF
Tuning TM-O interaction by acid etching in perovskite catalysts boosting catalytic performance
8
作者 Yanyu Jin Wenzhe Si +6 位作者 Xing Yuan Hongjun Cheng Bin Zhou Li Cai Yu Wang Qibao Wang Junhua Li 《Chinese Chemical Letters》 2025年第5期566-572,共7页
Perovskite oxides have been widely applied as an effective catalyst in heterogeneous catalysis.However,the rational design of active catalysts has been restricted by the lack of understanding of the electronic structu... Perovskite oxides have been widely applied as an effective catalyst in heterogeneous catalysis.However,the rational design of active catalysts has been restricted by the lack of understanding of the electronic structure.The correlations between surface properties and bulk electronic structure have been ignored.Herein,a simple handler of LaFeO_(3)with diluted HNO3 was employed to tune the electronic structure and catalytic properties.Experimental analysis and theoretical calculations elucidate that acid etching could raise the Fe valence and enhance Fe-O covalency in the octahedral structure,thereby lessening charge transfer energy.Enhanced Fe-O covalency could lower oxygen vacancy formation energy and enhance oxygen mobility.In-situ DRIFTS results indicated the inherent adsorption capability of Toluene and CO molecules has been greatly improved owing to higher Fe-O covalency.As compared,the catalysts after acid etching exhibited higher catalytic activity,and the T_(90)had a great reduction of 45 and 58℃ for toluene and CO oxidation,respectively.A deeper understanding of electronic structure in perovskite oxides may inspire the design of high-performance catalysts. 展开更多
关键词 Acid etching TM-O interaction Oxygen vacancy LaFeO_(3)perovskites HETEROGENEOUS Catalytic oxidation
原文传递
Tellurium-Terminated MXene Synthesis via One-Step Tellurium Etching
9
作者 Guoliang Ma Zongbin Luo +3 位作者 Hui Shao Yanbin Shen Zifeng Lin Patrice Simon 《Nano-Micro Letters》 2026年第1期738-749,共12页
With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale prod... With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems. 展开更多
关键词 Te-terminated MXene Elemental tellurium etching Sodium-ion storage High-rate performance
在线阅读 下载PDF
Effect of internal structure of a batch-processing wet-etch reactor on fluid flow and heat transfer
10
作者 Qinghang Deng Junqi Weng +2 位作者 Lei Zhou Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期177-186,共10页
Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid d... Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid dynamics(CFD)model considering heat generation of wet-etching reactions to investigate the fluid flow and heat transfer in the wet-etch reactor.The backflow is observed below and above the wafer region,as the flow resistance in this region is high.The temperature on the upper part of a wafer is higher due to the accumulation of reaction heat,and the average temperature of the side wafer is highest as its convective heat transfer is weakest.Narrowing the gap between wafer and reactor wall can force the etchant to flow in the wafer region and then facilitate the convective heat transfer,leading to better within-wafer and wafer-to-wafer etch uniformities.An inlet angle of 60°balances fluid by-pass and mechanical energy loss,and it yields the best temperature and etch uniformities.The batch with 25wafers has much wider flow channels and much lower flow resistance compared with that with 50wafers,and thus it shows better temperature and etch uniformities.These results and the CFD model should serve to guide the optimal design of batch-processing wet-etch reactors. 展开更多
关键词 Wet-etch reactor Batch-processing Computational fluid dynamics Reaction heat Internal structure etch uniformity
在线阅读 下载PDF
The etching strategy of zinc anode to enable high performance zinc-ion batteries 被引量:1
11
作者 Xueqing Fu Gaopeng Li +4 位作者 Xinlu Wang Jinxian Wang Wensheng Yu Xiangting Dong Dongtao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期125-143,I0004,共20页
Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydroge... Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydrogen evolution reaction,surface passivation and other side reactions will inevitably occur during the charging and discharging process of Zn anode,which will seriously affect the cycle stability of the battery and hinder its practical application.The etching strategy of Zn anode has attracted wide attention because of its simple operation and broad commercial prospects,and the etched Zn anode can effectively improve its electrochemical performance.However,there is no comprehensive review of the etching strategy of Zn anode.This review first summarizes the challenges faced by Zn anode,then puts forward the etching mechanisms and properties of acid,salt and other etchants.Finally,based on the above discussion,the challenges and opportunities of Zn anode etching strategy are proposed. 展开更多
关键词 Zinc-ion batteries Zn anode etchING 3D structures Dendrite-free
在线阅读 下载PDF
Bulk etch rates of CR-39 at high etchant concentrations:diffusionlimited etching 被引量:2
12
作者 E.M.Awad M.A.Rana Mushtaq Abed Al-Jubbori 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2020年第12期41-49,共9页
Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations(2–30 N)of NaOH-based etchant.Critical analysis and a deep discussion of the results are presented.A comprehensive nuclear t... Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations(2–30 N)of NaOH-based etchant.Critical analysis and a deep discussion of the results are presented.A comprehensive nuclear track chemical etching data bank was developed.Three regimes of CR-39 bulk etching were identified.Regime I spans etchant concentrations from 2 to 12 N.Regime II spans concentrations from 12 to 25 N.We call this the dynamic bulk etching regime.Regime III is for concentrations greater than 25 N.In this regime,the bulk etch rate is saturated with respect to the etchant concentration.This classification is discussed and explained.The role of ethanol in NaOH-based etchants is explored and discussed.A parameter called the “reduced bulk etch rate” is defined here,which helps in analyzing the dependence of bulk etching on the amount of ethanol in the etchant.The bulk etch rate shows a natural logarithmic dependence on the density of ethanol in the etchant. 展开更多
关键词 CR-39 detector ETHANOL Bulk etch rate Reduced bulk etch rate Diffusion-limited etching Concentration-limited etching
在线阅读 下载PDF
Anodic Etching Surface Treatment and Antibacterial Properties of Ti-Cu
13
作者 Zenglong Yan Shuyuan Zhang +3 位作者 Ling Ren Xizhuang Bai Ke Yang Xiang Wei 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第10期1767-1776,共10页
This study used an anodic etching(AE)method to construct a hierarchical rough surface on the surface of the Cu-bearing antibacterial titanium alloy,Ti-xCu(x=3,5,7 wt%),a three-dimensional structure with nested micro-/... This study used an anodic etching(AE)method to construct a hierarchical rough surface on the surface of the Cu-bearing antibacterial titanium alloy,Ti-xCu(x=3,5,7 wt%),a three-dimensional structure with nested micro-/submicro-pores and internal cavities,which is conducive to the adhesion and growth of bone cells.After AE treatment,with increase of the Cu content in the alloy,the surface of Ti-Cu alloy became sharper,with more fine micropores and internal cavities,thus increasing the surface area.The results indicated that the AE/Ti-Cu alloy exhibited good antibacterial properties and had the effect of inhibiting bacterial biofilm formation.AE treatment could increase the Cu ions release of Ti-Cu alloy in saline,and the higher the Cu content in the alloy,the more Cu ions release,resulting in stronger antibacterial performance of the alloy.AE/Ti-Cu alloy showed excellent biocompatibility,similar to the pure Ti.Therefore,anodic etching is a safe and effective surface treatment method for Ti-Cu alloy,with good clinical application prospects. 展开更多
关键词 Ti-Cu alloy Anodic etching Rough surface Antibacterial performance BIOCOMPATIBILITY
原文传递
Remote plasma enhanced cyclic etching of a cyclosiloxane polymer thin film
14
作者 Xianglin Wang Xinyu Luo +4 位作者 Weiwei Du Yuanhao Shen Xiaocheng Huang Zheng Yang Junjie Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期239-248,共10页
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po... The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation. 展开更多
关键词 remote plasma cyclic etching cyclosiloxane polymer initiated chemical vapor deposition in-situ characterization
在线阅读 下载PDF
Etching of quartz crystals in liquid phase environment:A review
15
作者 Yide Dong Yike Zhou +5 位作者 Haizhou Huang Bosong Zhang Xihan Li Kaiwen Chen Litao Sun Guangbin Dou 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期87-109,共23页
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency... Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices. 展开更多
关键词 Quartz crystal Materials processing Wet etching MICROFABRICATION Quartz MEMS
在线阅读 下载PDF
Etching Mechanism of Ti_(3)C_(2)Cl_(2) MXene Phases by CuCl_(2)-Lewis Molten Salt Method
16
作者 严明 ZHU Yu +5 位作者 HUANG Jiangtao CHEN Haoyu DENG Yuxiao CHEN Yanlin 王娟 Jan-Michael Albina 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期863-868,共6页
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ... We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results. 展开更多
关键词 molten salt method CuCl_(2) MXene first-principles calculations etching mechanism
原文传递
Anisotropic etching mechanisms of 4H-SiC:Experimental and first-principles insights
17
作者 Guang Yang Lingbo Xu +3 位作者 Can Cui Xiaodong Pi Deren Yang Rong Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期42-47,共6页
Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching... Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized. 展开更多
关键词 PRINCIPLES ALKALI etchING
在线阅读 下载PDF
In situ synthesis of SnPS_(3)/Ti_(3)C_(2)T_(x) hybrid anode via molten salt etching method for superior sodium-ion batteries
18
作者 Longsheng Zhong Ming Yue +5 位作者 Wenhu Xie Hongxiao He Yanhe Xiao Baochang Cheng Liangxu Lin Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期623-633,共11页
Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,i... Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,its practical applicability is restricted by insufficient rate ability,and severe capacity loss due to inadequate electrical conductivity and dramatic volume expansion.Inspired by the electrochemical enhancement effect of MXene substrates and the innovative Lewis acidic etching for MXene preparation,SnPS_(3)/Ti_(3)C_(2)T_(x) MXene(T=-Cl and-O) is constructed by synchronously phospho-sulfurizing Sn/Ti_(3)C_(2)T_(x) precursor.Benefiting from the boosted Na^(+) diffusion and electron transfer rates,as well as the mitigated stress expansion,the synthesized SnPS_(3/)Ti_(3)C_(2)T_(x) composite demonstrates enhanced rate capability(647 mA h g^(-1) at 10 A g^(-1)) alongside satisfactory long-term cycling stability(capacity retention of 94.6% after 2000 cycles at 5 A g^(-1)).Importantly,the assembled sodium-ion full cell delivers an impressive capacity retention of 97.7% after undergoing 1500 cycles at 2 A g^(-1).Moreover,the sodium storage mechanism of the SnPS_(3/)Ti_(3)C_(2)T_(x) electrode is elucidated through in-situ and ex-situ characterizations.This work proposes a novel approach to ameliorate the energy storage performance of thiophosphites by facile in-situ construction of composites with MXene. 展开更多
关键词 Thiophosphites SnPS_(3) Ti_(3)C_(2)T_(x)MXene Lewis acidic etching Sodium-ion batteries
在线阅读 下载PDF
Mechanism of K/Ni Etching for Biochar-H_(2)O Gasification
19
作者 Zhenyu Cheng Dongdong Feng +3 位作者 Qi Shang Yijun Zhao Wenda Zhang Shaozeng Sun 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期1-18,共18页
Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-... Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-H_(2)O gasification and etching so the DFT is carried out to see the catalytic role of different metal elements(K/Ni)in the zigzag biochar model.The calculation results show that the gasification of biochar-H_(2)O needs to go through four processes:dissociative adsorption of water,hydrogen transfer(hydrogen desorption,hydrogen atom transfer),carbon dissolution and CO desorption.The energy barrier indicated that the most significant step in reducing the activation energy of K is reflected in the hydrogen transfer step,which is reduced from 374.14 kJ/mol to 152.41 kJ/mol;the catalytic effect of Ni is mainly reflected in the carbon dissolution step,which is reduced from 122.34 kJ/mol to 84.8 kJ/mol.The existence of K causes the edge to have a stronger attraction to H and does not destroy theπbonds of biochar molecules.The destruction ofπbonds is mainly due to the role of H free radicals,while the destruction ofπbonds will lead to easier C-C bond rupture.Ni shows a strong attraction to O in OH,which forms strong Ni-O chemical bonds.Ni can also destroy the aromatic structure directly,making the gasification easier to happen.This study explored the catalytic mechanism of K/Ni on the biochar-H_(2)O gasification at the molecular level and looked forward to the potential synergy of K/Ni,laying a foundation for experimental research and catalyst design. 展开更多
关键词 BIOCHAR Potassium-nickel catalysis H_(2)O gasification etching Quantum chemistry Transition state theory
在线阅读 下载PDF
One-step Fabrication of Nanoporous Black Silicon Surfaces for Solar Cells using Modified Etching Solution 被引量:2
20
作者 汤叶华 周春兰 +4 位作者 周肃 赵彦 王文静 费建明 曹红彬 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期102-108,I0004,共8页
Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ... Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor. 展开更多
关键词 Modified etching solution Black silicon surface Shallower etching depth Blacksilicon solar cell
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部