随着内镜技术的普及和进步,腹腔镜联合胆道镜被更加广泛地应用于进行胆总管结石的探查手术,这也得到了外科临床上的普遍肯定[1]。我临床小组针对胆总管结石患者,采用腹腔镜胆总管探查(laparoscopic common bile duct exploration,LCBDE...随着内镜技术的普及和进步,腹腔镜联合胆道镜被更加广泛地应用于进行胆总管结石的探查手术,这也得到了外科临床上的普遍肯定[1]。我临床小组针对胆总管结石患者,采用腹腔镜胆总管探查(laparoscopic common bile duct exploration,LCBDE)联合胆道镜取石进行手术:该部分患者采用胆总管一期缝合术式,并将其手术疗效与LC术后联合ERCP治疗进行比较。展开更多
In this article,in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite(TMC)was conducted before and after electroshocking treatment(EST).After EST,t...In this article,in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite(TMC)was conducted before and after electroshocking treatment(EST).After EST,the tensile strength increased by 113.2 MPa.The effect of EST on the tensile strength and fracture behavior of TiB was investigated using in-situ characterization of the fracture morphology and crack propagation path of the matrix and TiB.Before EST,TiB fracture introduced cracks that extended into the matrix,resulting in material failure.After EST,the refined TiB improved the bearing capacity of the matrix,thereby improving TMC strength.Moreover,after EST,the cracks were introduced into the matrix,and resulting the fracture of matrix first.With an increase in the external load,cracks in the matrix were observed to propagate to TiB,and the refined TiB was fractured,detached,and pulled out,resulting in the formation of pores.Analyzing the propagation path of the main crack after EST showed that the deflection angle of the main crack increased.The micro structure of the fracture surface indicated that the fracture of the matrix was plastic,whereas that of TiB was brittle.After EST,the size and area of the dimples increased,confirming the increase in plasticity.The results revealed that the comprehensive mechanical properties of TiB/Ti-2Al-6Sn improved after EST.Hence,EST is an efficient method for tailoring the micro structures and mechanical properties of TMCs.展开更多
The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(...The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(3)+CaMoO4)during oxidative annealing of surface layers modified by electric spark treatment(EST).The reactive EST of the LPBF-built items based on nickel EP741NP alloy was carried out with low-melting Al−12%Si,Al−6%Ca−0.6%Si and Al−7%Ca−1%Mn electrodes.It was found that under EST done by Al−7%Ca−1%Mn electrode an intermetallic(β-NiAl+γ'-Ni3Al)15μm-thick layer reinforced by spherical oxide(CaMe)O nanoparticles was formed.Formation of that structure increases the wear resistance of LPBF nickel superalloy by 4.5 times.Further oxidative annealing at 1000°C leads to a formation of continuous two-layered coating with an inner layer ofα-Al_(2)O_(3) and an outer layer of CaMoO4,which together act as an effective barrier preventing the diffusion of oxygen into the bulk of the superalloy.展开更多
文摘随着内镜技术的普及和进步,腹腔镜联合胆道镜被更加广泛地应用于进行胆总管结石的探查手术,这也得到了外科临床上的普遍肯定[1]。我临床小组针对胆总管结石患者,采用腹腔镜胆总管探查(laparoscopic common bile duct exploration,LCBDE)联合胆道镜取石进行手术:该部分患者采用胆总管一期缝合术式,并将其手术疗效与LC术后联合ERCP治疗进行比较。
基金financially supported by the National Natural Science Foundation of China(No.52271135)the Major Research Plan of the National Natural Science Foundation of China(No.92266102)+5 种基金the Natural Science Foundation of Hubei Province(No.2022CFB492)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010174)the Application Foundation Frontier Project of Wuhan(No.2020010601012171)"Chu Tian Scholar"Project of Hubei Province(No.CTXZ2017-05)the Overseas Expertise Introduction Project for Discipline Innovation(No.B17034)the Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83)。
文摘In this article,in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite(TMC)was conducted before and after electroshocking treatment(EST).After EST,the tensile strength increased by 113.2 MPa.The effect of EST on the tensile strength and fracture behavior of TiB was investigated using in-situ characterization of the fracture morphology and crack propagation path of the matrix and TiB.Before EST,TiB fracture introduced cracks that extended into the matrix,resulting in material failure.After EST,the refined TiB improved the bearing capacity of the matrix,thereby improving TMC strength.Moreover,after EST,the cracks were introduced into the matrix,and resulting the fracture of matrix first.With an increase in the external load,cracks in the matrix were observed to propagate to TiB,and the refined TiB was fractured,detached,and pulled out,resulting in the formation of pores.Analyzing the propagation path of the main crack after EST showed that the deflection angle of the main crack increased.The micro structure of the fracture surface indicated that the fracture of the matrix was plastic,whereas that of TiB was brittle.After EST,the size and area of the dimples increased,confirming the increase in plasticity.The results revealed that the comprehensive mechanical properties of TiB/Ti-2Al-6Sn improved after EST.Hence,EST is an efficient method for tailoring the micro structures and mechanical properties of TMCs.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under State Research Assignment(No.0718-2020-0034)Development Program of MISIS(No.K7-2023-009)within the Framework Strategic Academic Leadership Program"Priority-2030".
文摘The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(3)+CaMoO4)during oxidative annealing of surface layers modified by electric spark treatment(EST).The reactive EST of the LPBF-built items based on nickel EP741NP alloy was carried out with low-melting Al−12%Si,Al−6%Ca−0.6%Si and Al−7%Ca−1%Mn electrodes.It was found that under EST done by Al−7%Ca−1%Mn electrode an intermetallic(β-NiAl+γ'-Ni3Al)15μm-thick layer reinforced by spherical oxide(CaMe)O nanoparticles was formed.Formation of that structure increases the wear resistance of LPBF nickel superalloy by 4.5 times.Further oxidative annealing at 1000°C leads to a formation of continuous two-layered coating with an inner layer ofα-Al_(2)O_(3) and an outer layer of CaMoO4,which together act as an effective barrier preventing the diffusion of oxygen into the bulk of the superalloy.