The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect ag...The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. In this paper, we present a new method named as 'weighted estimating equations (WEE)' for estimating the correlation parameters. The new estimates of correlation parameters are obtained as the solutions of these weighted estimating equations. For some commonly assumed correlation structures, we show that there exists a unique feasible solution to these weighted estimating equations regardless the correlation structure is correctly specified or not. The new feasible estimates of correlation parameters are consistent when the working correlation structure is correctly specified. Simulation results suggest that the new method works well in finite samples.展开更多
Informative dropout often arise in longitudinal data. In this paper we propose a mixture model in which the responses follow a semiparametric varying coefficient random effects model and some of the regression coeffic...Informative dropout often arise in longitudinal data. In this paper we propose a mixture model in which the responses follow a semiparametric varying coefficient random effects model and some of the regression coefficients depend on the dropout time in a non-parametric way. The local linear version of the profile-kernel method is used to estimate the parameters of the model. The proposed estimators are shown to be consistent and asymptotically normal, and the finite performance of the estimators is evaluated by numerical simulation.展开更多
文摘The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. In this paper, we present a new method named as 'weighted estimating equations (WEE)' for estimating the correlation parameters. The new estimates of correlation parameters are obtained as the solutions of these weighted estimating equations. For some commonly assumed correlation structures, we show that there exists a unique feasible solution to these weighted estimating equations regardless the correlation structure is correctly specified or not. The new feasible estimates of correlation parameters are consistent when the working correlation structure is correctly specified. Simulation results suggest that the new method works well in finite samples.
基金Supported by the National Natural Science Foundation of China(No.10571008)
文摘Informative dropout often arise in longitudinal data. In this paper we propose a mixture model in which the responses follow a semiparametric varying coefficient random effects model and some of the regression coefficients depend on the dropout time in a non-parametric way. The local linear version of the profile-kernel method is used to estimate the parameters of the model. The proposed estimators are shown to be consistent and asymptotically normal, and the finite performance of the estimators is evaluated by numerical simulation.