In this paper,we study the nonlinear stability problem for the two-dimensional Boussinesq system around the Couette flow in a finite channel with Navier-slip boundary condition for the velocity and Dirichlet boundary ...In this paper,we study the nonlinear stability problem for the two-dimensional Boussinesq system around the Couette flow in a finite channel with Navier-slip boundary condition for the velocity and Dirichlet boundary condition for the temperature with small viscosityνand small thermal diffusionμ.We establish that if the initial perturbation velocity and initial perturbation temperature satisfy ||u_(0)||H^(2)≤ε_(0) min{μ,ν}1/2, and ||θ_(0)||H^(1)+|||D_(x)|^(1/3)θ_(0)||H^(1)+|||D_(x)|^(1/3)θ_(0)||_(H^(1))≤εi min{μ,ν}^(5/6),for some smallε0 andε1 independent ofμ,ν,then the solution of the two-dimensional NavierStokes Boussinesq system does not transition away from the Couette flow for any time.展开更多
Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area an...Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area and applied the published coefficients for the world by Costanza to calculate the ecosystem services values through a spatial convolution method. The convolution analysis was done with a square processor with 5×5 neighborhood cells. The results showed that the ecosystem services value for the study area in the year 2003 was US$44 990 million which is US$89 million less than the value without operation, and the main contributions for that decrease were from water bodies, wetlands and estuaries. It is expected that this article can attract more interest to explore this field adopting geographic methods.展开更多
Navigation accuracy category-position (NACp) is an important parameter for system accuracy of traffic information service-broadcast (TIS-B), which is determined by estimate position uncertainty (EPU). Centered a...Navigation accuracy category-position (NACp) is an important parameter for system accuracy of traffic information service-broadcast (TIS-B), which is determined by estimate position uncertainty (EPU). Centered about the problems that the exist ing EPU calculation based on noise measurement is low in accuracy and unfit for describing uncorrected biases in target reports, this article analyses the traditional NACp model, and uses the least square estimation (LSE) in EPU calculation. Furthermore, it proposes an extended NACp model, which considers both noise and biases and acquires EPU estimation with the help of approximate multiplex Taylor expression. Analysis and simulation show that the proposed method not only leads to significant improvement of the accuracy of EPU calculation, but is fit for EPU calculation with tracking biases in TIS-B system as well. As such it can find application in practice to depict different kinds of error models in TIS-B system.展开更多
As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia...As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia convergence.展开更多
A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the...A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.展开更多
This paper presents a new approach to estimate the true position of an unmanned aerial vehicle (UAV) in the conditions of spoofing attacks on global positioning system (GPS) receivers. This approach consists of tw...This paper presents a new approach to estimate the true position of an unmanned aerial vehicle (UAV) in the conditions of spoofing attacks on global positioning system (GPS) receivers. This approach consists of two phases, the spoofing detection phase which is accomplished by hypothesis test and the trajectory estimation phase which is carried out by applying the adapted particle filters to the integrated inertial navigation system (INS) and GPS. Due to nonlinearity and unfavorable impacts of spoofing signals on GPS receivers, deviation in position calculation is modeled as a cumulative uniform error. This paper also presents a procedure of applying adapted particle swarm optimization filter (PSOF) to the INS/GPS integration system as an estimator to compensate spoofing attacks. Due to memory based nature of PSOF and benefits of each particle's experiences, application of PSOF algorithm in the INS/GPS integ- ration system leads to more precise positioning compared with general particle filter (PF) and adaptive unscented particle filer (AUPF) in the GPS spoofing attack scenarios. Simulation results show that the adapted PSOF algorithm is more reliable and accurate in estim- ating the true position of UAV in the condition of spoofing attacks. The validation of the proposed method is done by root mean square error (RMSE) test.展开更多
Stochastic system state estimation subject to the unknown interference input widely exists in many fields,such as the control,communication,signal processing,and fault diagnosis.However,the research results are mostly...Stochastic system state estimation subject to the unknown interference input widely exists in many fields,such as the control,communication,signal processing,and fault diagnosis.However,the research results are mostly limited to the stochastic system in which only the dynamic state model or the measurement model concerns the individual unknown interference input,and the state model and the measurement model are both with the same unknown interference input.State estimate of the stochastic systems where the state model and the measurement model contain dual Unknown Interference inputs(dual-UI)with different physical meanings and mathematical definitions is concerned here.Firstly,the decoupling condition with the Unknown Interference input in the State model(S-UI)is shown,which introduces the decoupled system with the adjacent Measurement concerned Unknown Interference inputs(M-UI)appearing in the state model and the measurement model.Then,through defining the Differential term of the adjacent M-UI(M-UID),the equivalent system with only M-UID in the state model is obtained.Finally,considering the design freedom of the equivalent system,the decoupling filter in the minimum mean square error sense and the adaptive minimum upper filter with different applicable conditions are represented to obtain the optimal and sub-optimal state estimate,respectively.Two simulation cases verify the effectiveness and superiority compared with the traditional methods.展开更多
A conservative system performing a small oscillation near every equilibrium position is analysed in classical way. The paper tries to answer the following question: How many types of the periodic small oscillation in ...A conservative system performing a small oscillation near every equilibrium position is analysed in classical way. The paper tries to answer the following question: How many types of the periodic small oscillation in the whole configuration space of the system are there? Making some hypotheses, it expresses the lower bounds of the number of the types for two cases where critical points of the potential function are nondegenerate and degenerate respectively by the Betti numbers and dimension of the constraint manifold only.展开更多
An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high m...An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.展开更多
L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. T...L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. Then with the help of the information of characteristic roots for the coefficient matrix of the system, L^p- L^q decay estimate of parabolic type of solution to the Cauchy problem is obtained.展开更多
This paper addresses the challenge of estimating eventual software system size during a development project. The ap-proach is to build a family of estimation models that use information about architectural design char...This paper addresses the challenge of estimating eventual software system size during a development project. The ap-proach is to build a family of estimation models that use information about architectural design characteristics of the evolving software product as leading indicators of system size. Four models were developed to provide an increasingly accurate size estimate throughout the design process. Multivariate regression analyses were conducted using 21 Ada subsystems, totaling 183,000 lines of code. The models explain from 47% of the variation in delivered software size early in the design phase, to 89% late in the design phase.展开更多
In this paper, we proposed a novel method of joint phase noise estimate (JPNE) for PDM-M-QAM (M = 4, 16, 32, 64, …) transmission systems, and established the theoretical model to illustrate the operation mechanism. T...In this paper, we proposed a novel method of joint phase noise estimate (JPNE) for PDM-M-QAM (M = 4, 16, 32, 64, …) transmission systems, and established the theoretical model to illustrate the operation mechanism. The simulation of laser phase noise and fiber nonlinearity compensation based on the proposed JPNE method had also been demonstrated. For 112 Gb/s PDM-4QAM transmission system, the simulation results had showed that the optimum launch power increased from -4 dBm to at least 0 dBm compared with the condition of no phase noise compensation in reach of all simulation distances.展开更多
In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some dec...In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some decay property due to the parabolicity. Based on detailed analysis on the Green function of the system, the pointwise estimates of the solutions are obtained, from which the generalized Huygens’ principle is shown.展开更多
A new identification method for a linear discrete-time closed-loop system is proposed based on an output over-sampling scheme. When the system outputs are over-sampled the new output sequences would contain more infor...A new identification method for a linear discrete-time closed-loop system is proposed based on an output over-sampling scheme. When the system outputs are over-sampled the new output sequences would contain more information about the plant structure. Using general least squares method (GLS) the plant over-sampled model should be recognized. Then the original plant model should be obtained by its relationship with the over-sampled model. Compared with conventional approaches the advantage of the new method is that even if the ordinary identifiability conditions are not satisfied, a close-loop system can be identified by using the oversampled output without utilizing any external test signal. Accuracy analysis shows the relationship between the estimation error and the over-sampling rate. Numerical simulation illnstrates its effectiveness.展开更多
An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both syste...An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both system state and fault can be estimated. It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms, which confirms the effectiveness of the method.展开更多
The Cauchy problem of the generalized Kuramoto-Sivashinsky equation in multidimensions(n ≥ 3) is considered. Based on Green's function method, some ingenious energy estimates are given. Then the global existence ...The Cauchy problem of the generalized Kuramoto-Sivashinsky equation in multidimensions(n ≥ 3) is considered. Based on Green's function method, some ingenious energy estimates are given. Then the global existence and pointwise convergence rates of the classical solutions are established. Furthermore, the L^p convergence rate of the solution is obtained.展开更多
This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and th...This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.展开更多
Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cos...Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cost and input energy comparisons of RC office buildings of different floor systems.Conventional solid,ribbed,flat plate and flat slab systems are considered in the study.Building models in three-dimensional using extended threedimensional analysis of building systems(ETABS)and in two-dimensional using slab analysis by the finite element(SAFE)are developed for analysis purposes.Analysis and design using both software packages and manual calculations are employed to obtain the optimum sections and reinforcements to fit cities of low seismic intensities for all the considered building systems.Two ground motion records of low peak ground acceleration(PGA)levels are used to excite the models to measure the input energies.Uniformat cost estimating system is adopted to categorize building components according to 12 divisions.Also,Microsoft(MS)Project is utilized to identify the construction cost and duration of each building system.The study shows that floor system significantly causes changes in the input energy to structures.In addition,the slight increase in the PGA increases the amount of input energy particularly flat plate system.Estimated cost of the flat plate system that the flat slab system is of higher value as compared to ribbed and conventional slab systems.The use of drop panels increases this value as well.Moreover,the estimated cost of the ribbed slab system exceeds that of conventional system.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
文摘In this paper,we study the nonlinear stability problem for the two-dimensional Boussinesq system around the Couette flow in a finite channel with Navier-slip boundary condition for the velocity and Dirichlet boundary condition for the temperature with small viscosityνand small thermal diffusionμ.We establish that if the initial perturbation velocity and initial perturbation temperature satisfy ||u_(0)||H^(2)≤ε_(0) min{μ,ν}1/2, and ||θ_(0)||H^(1)+|||D_(x)|^(1/3)θ_(0)||H^(1)+|||D_(x)|^(1/3)θ_(0)||_(H^(1))≤εi min{μ,ν}^(5/6),for some smallε0 andε1 independent ofμ,ν,then the solution of the two-dimensional NavierStokes Boussinesq system does not transition away from the Couette flow for any time.
基金funded by the Major Program of National Natural Science Foundation of China (40930101)National Technology Introduction Program of China (948 Program,2009-Z31)the Key Project of the Commonweal Foundation of China's National Academy (2010-02)~~
文摘Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area and applied the published coefficients for the world by Costanza to calculate the ecosystem services values through a spatial convolution method. The convolution analysis was done with a square processor with 5×5 neighborhood cells. The results showed that the ecosystem services value for the study area in the year 2003 was US$44 990 million which is US$89 million less than the value without operation, and the main contributions for that decrease were from water bodies, wetlands and estuaries. It is expected that this article can attract more interest to explore this field adopting geographic methods.
基金National High-tech Research and Development Program (2006AA12A103,2009AA122Z329)National Science Fund for Distinguished Young Scholars (60625102)
文摘Navigation accuracy category-position (NACp) is an important parameter for system accuracy of traffic information service-broadcast (TIS-B), which is determined by estimate position uncertainty (EPU). Centered about the problems that the exist ing EPU calculation based on noise measurement is low in accuracy and unfit for describing uncorrected biases in target reports, this article analyses the traditional NACp model, and uses the least square estimation (LSE) in EPU calculation. Furthermore, it proposes an extended NACp model, which considers both noise and biases and acquires EPU estimation with the help of approximate multiplex Taylor expression. Analysis and simulation show that the proposed method not only leads to significant improvement of the accuracy of EPU calculation, but is fit for EPU calculation with tracking biases in TIS-B system as well. As such it can find application in practice to depict different kinds of error models in TIS-B system.
基金supported by the National Natural Sciences Foundation of China(Grants No.41202156 and 41330211)China Geological Survey(Grants No.12120115026901 and 12120115027001)the Institute of Geology,CAGS(Grant No.J1520)
文摘As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia convergence.
基金The research was supported by the Natural Science Foundation of China
文摘A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.
文摘This paper presents a new approach to estimate the true position of an unmanned aerial vehicle (UAV) in the conditions of spoofing attacks on global positioning system (GPS) receivers. This approach consists of two phases, the spoofing detection phase which is accomplished by hypothesis test and the trajectory estimation phase which is carried out by applying the adapted particle filters to the integrated inertial navigation system (INS) and GPS. Due to nonlinearity and unfavorable impacts of spoofing signals on GPS receivers, deviation in position calculation is modeled as a cumulative uniform error. This paper also presents a procedure of applying adapted particle swarm optimization filter (PSOF) to the INS/GPS integration system as an estimator to compensate spoofing attacks. Due to memory based nature of PSOF and benefits of each particle's experiences, application of PSOF algorithm in the INS/GPS integ- ration system leads to more precise positioning compared with general particle filter (PF) and adaptive unscented particle filer (AUPF) in the GPS spoofing attack scenarios. Simulation results show that the adapted PSOF algorithm is more reliable and accurate in estim- ating the true position of UAV in the condition of spoofing attacks. The validation of the proposed method is done by root mean square error (RMSE) test.
基金supported by the National Natural Science Foundation of China(Nos.61603040 and 61433003)Yunnan Applied Basic Research Project of China(No.201701CF00037)+1 种基金Guangdong Province Science and Technology Innovation Strategy Special Fund Project,China(No.skjtdzxrwqd2018001)Yunnan Provincial Science and Technology Department Key Research Program(Engineering),China(No.2018BA070)。
文摘Stochastic system state estimation subject to the unknown interference input widely exists in many fields,such as the control,communication,signal processing,and fault diagnosis.However,the research results are mostly limited to the stochastic system in which only the dynamic state model or the measurement model concerns the individual unknown interference input,and the state model and the measurement model are both with the same unknown interference input.State estimate of the stochastic systems where the state model and the measurement model contain dual Unknown Interference inputs(dual-UI)with different physical meanings and mathematical definitions is concerned here.Firstly,the decoupling condition with the Unknown Interference input in the State model(S-UI)is shown,which introduces the decoupled system with the adjacent Measurement concerned Unknown Interference inputs(M-UI)appearing in the state model and the measurement model.Then,through defining the Differential term of the adjacent M-UI(M-UID),the equivalent system with only M-UID in the state model is obtained.Finally,considering the design freedom of the equivalent system,the decoupling filter in the minimum mean square error sense and the adaptive minimum upper filter with different applicable conditions are represented to obtain the optimal and sub-optimal state estimate,respectively.Two simulation cases verify the effectiveness and superiority compared with the traditional methods.
文摘A conservative system performing a small oscillation near every equilibrium position is analysed in classical way. The paper tries to answer the following question: How many types of the periodic small oscillation in the whole configuration space of the system are there? Making some hypotheses, it expresses the lower bounds of the number of the types for two cases where critical points of the potential function are nondegenerate and degenerate respectively by the Betti numbers and dimension of the constraint manifold only.
文摘An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.
基金supported by the National Natural Science Foundation of China (10771055)HNSF(07JJ3007)
文摘L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. Then with the help of the information of characteristic roots for the coefficient matrix of the system, L^p- L^q decay estimate of parabolic type of solution to the Cauchy problem is obtained.
文摘This paper addresses the challenge of estimating eventual software system size during a development project. The ap-proach is to build a family of estimation models that use information about architectural design characteristics of the evolving software product as leading indicators of system size. Four models were developed to provide an increasingly accurate size estimate throughout the design process. Multivariate regression analyses were conducted using 21 Ada subsystems, totaling 183,000 lines of code. The models explain from 47% of the variation in delivered software size early in the design phase, to 89% late in the design phase.
文摘In this paper, we proposed a novel method of joint phase noise estimate (JPNE) for PDM-M-QAM (M = 4, 16, 32, 64, …) transmission systems, and established the theoretical model to illustrate the operation mechanism. The simulation of laser phase noise and fiber nonlinearity compensation based on the proposed JPNE method had also been demonstrated. For 112 Gb/s PDM-4QAM transmission system, the simulation results had showed that the optimum launch power increased from -4 dBm to at least 0 dBm compared with the condition of no phase noise compensation in reach of all simulation distances.
基金Xingwen Hao's research was supported in part by National Natural Science Foundation of China (10571120 and 10971135)Shanghai Shuguang Project (06SG11)+1 种基金the Program for New Century Excellent Talents of Chinese Ministry of Education (NCET-07-0546) Doctorial Foundation of Weifang University (2011BS11)
文摘In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some decay property due to the parabolicity. Based on detailed analysis on the Green function of the system, the pointwise estimates of the solutions are obtained, from which the generalized Huygens’ principle is shown.
基金Project supported by National Natural Science Foundation ofChina (Grant No .60174030)
文摘A new identification method for a linear discrete-time closed-loop system is proposed based on an output over-sampling scheme. When the system outputs are over-sampled the new output sequences would contain more information about the plant structure. Using general least squares method (GLS) the plant over-sampled model should be recognized. Then the original plant model should be obtained by its relationship with the over-sampled model. Compared with conventional approaches the advantage of the new method is that even if the ordinary identifiability conditions are not satisfied, a close-loop system can be identified by using the oversampled output without utilizing any external test signal. Accuracy analysis shows the relationship between the estimation error and the over-sampling rate. Numerical simulation illnstrates its effectiveness.
文摘An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both system state and fault can be estimated. It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms, which confirms the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(11271141)Chongqing Science&Technology Commission(cstc2018jcyjAX0787)
文摘The Cauchy problem of the generalized Kuramoto-Sivashinsky equation in multidimensions(n ≥ 3) is considered. Based on Green's function method, some ingenious energy estimates are given. Then the global existence and pointwise convergence rates of the classical solutions are established. Furthermore, the L^p convergence rate of the solution is obtained.
文摘This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.
文摘Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cost and input energy comparisons of RC office buildings of different floor systems.Conventional solid,ribbed,flat plate and flat slab systems are considered in the study.Building models in three-dimensional using extended threedimensional analysis of building systems(ETABS)and in two-dimensional using slab analysis by the finite element(SAFE)are developed for analysis purposes.Analysis and design using both software packages and manual calculations are employed to obtain the optimum sections and reinforcements to fit cities of low seismic intensities for all the considered building systems.Two ground motion records of low peak ground acceleration(PGA)levels are used to excite the models to measure the input energies.Uniformat cost estimating system is adopted to categorize building components according to 12 divisions.Also,Microsoft(MS)Project is utilized to identify the construction cost and duration of each building system.The study shows that floor system significantly causes changes in the input energy to structures.In addition,the slight increase in the PGA increases the amount of input energy particularly flat plate system.Estimated cost of the flat plate system that the flat slab system is of higher value as compared to ribbed and conventional slab systems.The use of drop panels increases this value as well.Moreover,the estimated cost of the ribbed slab system exceeds that of conventional system.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.