A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error ...A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error systems with input delay and de-rives preview control laws based on minimization of evaluation function. Finally, simula-tion is done on linear direct current motor without brush. The results reveal that the tech-nique proposed herein is valid for improving performance of servo systems.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manife...Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.展开更多
Recently,the NGPON2 standards organization has decided to deploy LDPC code in upstream and downstream channels in next-generation Ethernet passive optical network(NG-EPON)systems.However,PON upstream channels operate ...Recently,the NGPON2 standards organization has decided to deploy LDPC code in upstream and downstream channels in next-generation Ethernet passive optical network(NG-EPON)systems.However,PON upstream channels operate in burst-mode,hence the turn-on effects in optical network units(ONUs)may introduce burst errors,which are difficult for LDPC to deal with.One of the solutions is introducing an interleaver to convert consecutive burst errors into separate random errors.The traditional interleavers such as the block interleaver and the random interleaver,only consider dispersing the consecutive errors.In this paper,we present a design methodology for channel-adaptive interleaving pattern by joint optimizing of interleaving and LDPC decoding in PON systems deploying LDPC codes.After determining the interleaving pattern where the bits can be recovered with more reliable messages during LDPC iterative decoding,we map the bits from the potential locations of burst errors to the interleaving positions.By doing so,we can not only disperse the burst errors but also make full use of the LDPC code to improve its decoding performance.The numerical results show that the proposed interleaving scheme has a better performance under any burst-error length.展开更多
The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC...The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC)system.To enhance its adaptive adjustment capability under frequency mismatch(FM)conditions,this paper introduces a narrowband frequency adaptive estimation module into the conventional FFHANC system.This module integrates an autoregressive(AR)model and a linear cascaded adaptive notch filter(LCANF),enabling accurate reference signal frequency estimation even under significant FM.Furthermore,in order to improve the coherence between narrowband and broadband components in the system’s error signal and its corresponding control filter for the conventional FFHANC system,this paper proposes an algorithm based on autoregressive bandpass filter bank(AR-BPFB)for error separation.Simulation results demonstrate that the proposed FFHANC system maintains robust performance under high FM conditions and effectively suppresses hybrid-band noise.The AR-BPFB algorithm significantly elevates the convergence speed of the FFHANC system.展开更多
This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio...This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.展开更多
AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A...AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.展开更多
Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progre...Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.展开更多
Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer a...In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.展开更多
In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
The paper deduced a calculation formula by the classic control theory on the Reproducibility Error of parts processing in the technology system,the flexible clamp system, with the clamping device on the gas power,and ...The paper deduced a calculation formula by the classic control theory on the Reproducibility Error of parts processing in the technology system,the flexible clamp system, with the clamping device on the gas power,and analyzed its influencing factor with examples,the Reproducibility Error law:\ The larger the diameter of the cylinder,the smaller the error; the slower the tool speed,(k values smaller),the smaller the error.展开更多
A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficien...A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.展开更多
Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is u...Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.展开更多
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixtur...Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.展开更多
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr...In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model...This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II.Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60?S and 60?N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved.展开更多
文摘A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error systems with input delay and de-rives preview control laws based on minimization of evaluation function. Finally, simula-tion is done on linear direct current motor without brush. The results reveal that the tech-nique proposed herein is valid for improving performance of servo systems.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.
基金supported by National Natural Science Foundation of China(No.U21A20454).
文摘Recently,the NGPON2 standards organization has decided to deploy LDPC code in upstream and downstream channels in next-generation Ethernet passive optical network(NG-EPON)systems.However,PON upstream channels operate in burst-mode,hence the turn-on effects in optical network units(ONUs)may introduce burst errors,which are difficult for LDPC to deal with.One of the solutions is introducing an interleaver to convert consecutive burst errors into separate random errors.The traditional interleavers such as the block interleaver and the random interleaver,only consider dispersing the consecutive errors.In this paper,we present a design methodology for channel-adaptive interleaving pattern by joint optimizing of interleaving and LDPC decoding in PON systems deploying LDPC codes.After determining the interleaving pattern where the bits can be recovered with more reliable messages during LDPC iterative decoding,we map the bits from the potential locations of burst errors to the interleaving positions.By doing so,we can not only disperse the burst errors but also make full use of the LDPC code to improve its decoding performance.The numerical results show that the proposed interleaving scheme has a better performance under any burst-error length.
基金supported in part by the Postgraduate Research&Practice Innovation Program of Nanjing University of Aeronautics and Astronautics(No.xcxjh20240326).
文摘The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC)system.To enhance its adaptive adjustment capability under frequency mismatch(FM)conditions,this paper introduces a narrowband frequency adaptive estimation module into the conventional FFHANC system.This module integrates an autoregressive(AR)model and a linear cascaded adaptive notch filter(LCANF),enabling accurate reference signal frequency estimation even under significant FM.Furthermore,in order to improve the coherence between narrowband and broadband components in the system’s error signal and its corresponding control filter for the conventional FFHANC system,this paper proposes an algorithm based on autoregressive bandpass filter bank(AR-BPFB)for error separation.Simulation results demonstrate that the proposed FFHANC system maintains robust performance under high FM conditions and effectively suppresses hybrid-band noise.The AR-BPFB algorithm significantly elevates the convergence speed of the FFHANC system.
基金supported by the National Key R&D Program of China [grant number 2023YFC3008004]。
文摘This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.
基金Supported by Ongoing Research Funding Program(ORFFT-2025-054-1),King Saud University,Riyadh,Saudi Arabia.
文摘AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.
文摘Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.
基金National Natural Science Foundation of China(No.51275375,No.51509006)Shaanxi Provincial Natural Science Basic Research Plan(No.2014JQ7246)+1 种基金The Science and Technology of Hubei Province(No.B2015115)Doctoral Research Foundation of Hubei University of Automotive Technology(No.BK201403)
文摘In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
基金Tianjin Nature Science Date(08JCYBJC 11700) "CAD System of Fixture on New Fixture Design Theory of Accuracy Design"
文摘The paper deduced a calculation formula by the classic control theory on the Reproducibility Error of parts processing in the technology system,the flexible clamp system, with the clamping device on the gas power,and analyzed its influencing factor with examples,the Reproducibility Error law:\ The larger the diameter of the cylinder,the smaller the error; the slower the tool speed,(k values smaller),the smaller the error.
文摘A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.
基金Supported by Key Project of National Natural Science Foundation of China(Grant No.51535009)111 Project(Grant No.B13044)
文摘Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.
基金supported by National Natural Science Foundation of China (Grant No. 50975200)National Key Technologies R & D Programmer of China (Grant No. 2009ZX04014-021)
文摘Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.
文摘In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
基金jointly supported by the National Key Research and Development Program of China (Grant. No. 2017YFC1501601)the National Natural Science Foundation of China (Grant. No. 41475100)+1 种基金the National Science and Technology Support Program (Grant. No. 2012BAC22B03)the Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II.Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60?S and 60?N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved.