A major concern in modern smart-phones and hand-held devices is a way of mitigating the time interval error (TIE) perceived at high-speed digital transits along the traces of the circuit-board (rigid and or flexible) ...A major concern in modern smart-phones and hand-held devices is a way of mitigating the time interval error (TIE) perceived at high-speed digital transits along the traces of the circuit-board (rigid and or flexible) used in baseband infrastructures. Indicated here is a way of adopting a planar fractal inductor configuration to improvise the necessary time-delay in the transits of digital signal phase jitter and reduce the TIE. This paper addresses systematic design considerations on fractal inductor geometry commensurate with practical aspects of its implementation as delaylines in the high-speed digital transports at the baseband operations of smart-phone infrastructures. Experimental results obtained from a test module are presented to illustrate the efficacy of the design and acceptable delay performance of the test structure commensurate with the digital transports of interest.展开更多
The position synthesis of planar linkages is to locate the center point of the moving joint on a rigid link, whose trajectory is a circle or a straight line. Utilizing the min-max optimization scheme, the fitting curv...The position synthesis of planar linkages is to locate the center point of the moving joint on a rigid link, whose trajectory is a circle or a straight line. Utilizing the min-max optimization scheme, the fitting curve needs to minimize the maximum fitting error to acquire the dimension of a planar binary P-R link. Based on the saddle point programming, the fitting straight line is determined to the planar discrete point-path traced by the point of the rigid body in planar motion. The property and evolution of the defined saddle line error can be revealed from three given separate points. A quartic algebraic equation relating the fitting error and the coordinates is derived, which agrees with the classical theory. The effect of the fourth point is discussed in three cases through the constraint equations. The multi-position saddle line error is obtained by combination and comparison from the saddle point programming. Several examples are presented to illustrate the solution process for the saddle line error of the moving plane. The saddle line error surface and the contour map presented to show the variations of the fitting error in the fixed frame. The discrete kinematic geometry is then set up to disclose the relations of the separate positions of the rigid body, the location of the tracing point on the moving body, and the position and orientation of the saddle line to the point-path. This paper presents a new analytic geometry method for saddle line fitting and provides a theoretical foundation for position synthesis.展开更多
On the basis of analyzing the machine-workpiece-tool system, the main factors affecting diameter errors in bars turning are considered, and the mathematic models of the actual workpiece diameter at the cutting point a...On the basis of analyzing the machine-workpiece-tool system, the main factors affecting diameter errors in bars turning are considered, and the mathematic models of the actual workpiece diameter at the cutting point are established according to the three usual methods of mounting workpieces on a turning machine. Further a prediction system for diameter errors is developed; a new method, called discrete nodes output, is presented and applied to expressing workpiece diameter errors at given points along the part axis, then off-line compensation is implemented according to the prediction values to diminish machining errors. The results indicate that the method can diminish diameter errors more than 70%, greatly improve the machining accuracy of bars.展开更多
Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-a...Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.展开更多
A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointin...A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.展开更多
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
文摘A major concern in modern smart-phones and hand-held devices is a way of mitigating the time interval error (TIE) perceived at high-speed digital transits along the traces of the circuit-board (rigid and or flexible) used in baseband infrastructures. Indicated here is a way of adopting a planar fractal inductor configuration to improvise the necessary time-delay in the transits of digital signal phase jitter and reduce the TIE. This paper addresses systematic design considerations on fractal inductor geometry commensurate with practical aspects of its implementation as delaylines in the high-speed digital transports at the baseband operations of smart-phone infrastructures. Experimental results obtained from a test module are presented to illustrate the efficacy of the design and acceptable delay performance of the test structure commensurate with the digital transports of interest.
基金Supported by National Natural Science Foundation of China(Grant No.51275067)
文摘The position synthesis of planar linkages is to locate the center point of the moving joint on a rigid link, whose trajectory is a circle or a straight line. Utilizing the min-max optimization scheme, the fitting curve needs to minimize the maximum fitting error to acquire the dimension of a planar binary P-R link. Based on the saddle point programming, the fitting straight line is determined to the planar discrete point-path traced by the point of the rigid body in planar motion. The property and evolution of the defined saddle line error can be revealed from three given separate points. A quartic algebraic equation relating the fitting error and the coordinates is derived, which agrees with the classical theory. The effect of the fourth point is discussed in three cases through the constraint equations. The multi-position saddle line error is obtained by combination and comparison from the saddle point programming. Several examples are presented to illustrate the solution process for the saddle line error of the moving plane. The saddle line error surface and the contour map presented to show the variations of the fitting error in the fixed frame. The discrete kinematic geometry is then set up to disclose the relations of the separate positions of the rigid body, the location of the tracing point on the moving body, and the position and orientation of the saddle line to the point-path. This paper presents a new analytic geometry method for saddle line fitting and provides a theoretical foundation for position synthesis.
文摘On the basis of analyzing the machine-workpiece-tool system, the main factors affecting diameter errors in bars turning are considered, and the mathematic models of the actual workpiece diameter at the cutting point are established according to the three usual methods of mounting workpieces on a turning machine. Further a prediction system for diameter errors is developed; a new method, called discrete nodes output, is presented and applied to expressing workpiece diameter errors at given points along the part axis, then off-line compensation is implemented according to the prediction values to diminish machining errors. The results indicate that the method can diminish diameter errors more than 70%, greatly improve the machining accuracy of bars.
基金Supported by National Basic Research Program of China("973"Program,No.2013CB632305)
文摘Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.
文摘A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.
文摘The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.