This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential o...This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the integral form is equivalent, one cannot exist without the other, hence can be used interchangeably. Dimensional model problems consisting of diffusion equation, convection-diffusion equation, and Burgers equation described by self adjoint, non-self adjoint, and nonlinear differential operators are considered to present extensive numerical studies using Galerkin method with weak form (GM/WF) and least squares process (LSP) to determine computed convergence rates of various error norms and present comparisons with the theoretical convergence rates.展开更多
Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-v...Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.展开更多
This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator ...This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation....In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.展开更多
Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment...Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.展开更多
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the pred...Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error est...In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.展开更多
Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal ...Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error b...An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A...In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.展开更多
The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satis...The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.展开更多
Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It lea...Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.展开更多
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absenc...In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.展开更多
The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error...The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.展开更多
文摘This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the integral form is equivalent, one cannot exist without the other, hence can be used interchangeably. Dimensional model problems consisting of diffusion equation, convection-diffusion equation, and Burgers equation described by self adjoint, non-self adjoint, and nonlinear differential operators are considered to present extensive numerical studies using Galerkin method with weak form (GM/WF) and least squares process (LSP) to determine computed convergence rates of various error norms and present comparisons with the theoretical convergence rates.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375018,92148301).
文摘Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.
基金Supported by the National Natural Science Foundation of China (Grant Nos.1236108412001130)。
文摘This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61101137,61201239,and 61205118)
文摘In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.
基金Project supported by the Open Research Fund Programof the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, WuhanUniversity (No.905276031-04-10) .
文摘Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.
基金funded by the National Natural Science Foundation Science Fund for Youth (Grant No.41405095)the Key Projects in the National Science and Technology Pillar Program during the Twelfth Fiveyear Plan Period (Grant No.2012BAC22B02)the National Natural Science Foundation Science Fund for Creative Research Groups (Grant No.41221064)
文摘Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
基金supported by National Natural Science Foundation of China (11071226 11201122)
文摘In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.
基金Subsidized by NSFC(11571274 and 11171269)the Ph.D.Programs Foundation of Ministry of Education of China(20110201110027)
文摘Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金supported by the National Natural Science Foundation of China(91538201)
文摘In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.
基金the Henan Natural Science Foundation(072300410320)the Henan Education Department Foundational Study Foundation(200510460311)
文摘The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.
文摘In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.
文摘The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.