Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a sig...Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.展开更多
In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error est...In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error b...An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.展开更多
A goal-oriented adaptive finite element(FE) method for solving 3D direct current(DC) resistivity modeling problem is presented. The model domain is subdivided into unstructured tetrahedral elements that allow for ...A goal-oriented adaptive finite element(FE) method for solving 3D direct current(DC) resistivity modeling problem is presented. The model domain is subdivided into unstructured tetrahedral elements that allow for efficient local mesh refinement and flexible description of complex models. The elements that affect the solution at each receiver location are adaptively refined according to a goal-oriented posteriori error estimator using dual-error weighting approach. The FE method with adapting mesh can easily handle such structures at almost any level of complexity. The method is demonstrated on two synthetic resistivity models with analytical solutions and available results from integral equation method, so the errors can be quantified. The applicability of the numerical method is illustrated on a resistivity model with a topographic ridge. Numerical examples show that this method is flexible and accurate for geometrically complex situations.展开更多
Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the consta...Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the constant and the linear strain are uniquely determined, and the quasi-conforming finite element method is convergent to constant strain. There are different methods for constructing the rigid displacement items, and different methods correspond to different order node errors, and this is different from ordinary displacement method finite element.展开更多
Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It lead...Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.展开更多
A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution...A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.展开更多
Based on an improved orthogonal expansion in an element, a new error expression of n-degree finite element approximation uh to two-point boundary value problem is derived, and then superconvergence of two order for bo...Based on an improved orthogonal expansion in an element, a new error expression of n-degree finite element approximation uh to two-point boundary value problem is derived, and then superconvergence of two order for both function and derivatives are obtained.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
文摘Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.
基金supported by National Natural Science Foundation of China (11071226 11201122)
文摘In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.
基金supported by the National Natural Science Foundation of China (No. 41204055)the National Basic Research Program of China (No. 2013CB733203)the Opening Project (No. SMIL-2014-06) of Hubei Subsurface Multi-Scale Imaging Lab (SMIL), China University of Geosciences, Wuhan, China
文摘A goal-oriented adaptive finite element(FE) method for solving 3D direct current(DC) resistivity modeling problem is presented. The model domain is subdivided into unstructured tetrahedral elements that allow for efficient local mesh refinement and flexible description of complex models. The elements that affect the solution at each receiver location are adaptively refined according to a goal-oriented posteriori error estimator using dual-error weighting approach. The FE method with adapting mesh can easily handle such structures at almost any level of complexity. The method is demonstrated on two synthetic resistivity models with analytical solutions and available results from integral equation method, so the errors can be quantified. The applicability of the numerical method is illustrated on a resistivity model with a topographic ridge. Numerical examples show that this method is flexible and accurate for geometrically complex situations.
文摘Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the constant and the linear strain are uniquely determined, and the quasi-conforming finite element method is convergent to constant strain. There are different methods for constructing the rigid displacement items, and different methods correspond to different order node errors, and this is different from ordinary displacement method finite element.
基金Project supported by the National Natural Science Foundation of China (No. 10876100)
文摘Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.
文摘A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.
基金This work was supported by The Special Funds for State Major Basic Research Projects(No. G1999032804)The National Natural Science Foundation of China(Grant No.10471038)
文摘Based on an improved orthogonal expansion in an element, a new error expression of n-degree finite element approximation uh to two-point boundary value problem is derived, and then superconvergence of two order for both function and derivatives are obtained.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.