期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ADS-B Reception Error Correction Based on the LSTM Neural-Network Model
1
作者 Jamal Habibi Markani Syed Ibtehaj Raza Rizvi +2 位作者 Abdessamad Amrhar Jean-Marc Gagné René Jr. Landry 《Communications and Network》 2023年第2期25-42,共18页
Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can b... Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites. 展开更多
关键词 ADS-B Long Short-Term Memory Packet error correction rate error correction Bit error rate
在线阅读 下载PDF
Quaternion Integers Based Higher Length Cyclic Codes and Their Decoding Algorithm 被引量:1
2
作者 Muhammad Sajjad Tariq Shah +2 位作者 Mohammad Mazyad Hazzazi Adel R.Alharbi Iqtadar Hussain 《Computers, Materials & Continua》 SCIE EI 2022年第10期1177-1194,共18页
The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the co... The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability. 展开更多
关键词 Mannheim distance monoid ring cyclic codes parity check matrix extension syndromes decoding code rate and error correction capability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部