This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
With the support from the National Natural Science Foundation of China,Prof.Huang Yanyi(黄岩谊)led a team at Peking University to demonstrate a novel approach,which combined fluorogenic sequencingby-synthesis(SBS)chem...With the support from the National Natural Science Foundation of China,Prof.Huang Yanyi(黄岩谊)led a team at Peking University to demonstrate a novel approach,which combined fluorogenic sequencingby-synthesis(SBS)chemistry with an information theory-based error-correction coding scheme to展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptab...Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes.展开更多
By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correc...By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.展开更多
In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case...In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case when errors occur in multi- ple channels. Importantly, we show the necessary and sufficient conditions on the existence of linear network error correction mul- ticast/broadcast/dispersion maximum distance separable (MDS) code on a matroidal error correction network.展开更多
The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the co...The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.展开更多
The paper review the public-key cryptosystems based on the error correcting codes such as Goppa code, BCH code, RS code, rank distance code, algebraic geometric code as well as LDPC code, and made the comparative anal...The paper review the public-key cryptosystems based on the error correcting codes such as Goppa code, BCH code, RS code, rank distance code, algebraic geometric code as well as LDPC code, and made the comparative analyses of the merits and drawbacks of them. The cryptosystem based on Goppa code has high security, but can be achieved poor. The cryptosystems based on other error correcting codes have higher performance than Goppa code. But there are still some disadvantages to solve. At last, the paper produce an assumption of the Niederreiter cascade combination cryptosystem based on double public-keys under complex circumstances, which has higher performance and security than the traditional cryptosystems.展开更多
A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the we...A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.展开更多
In this paper we present an efficient algorithm to decode linear block codes on binary channels. The main idea consists in using a vote procedure in order to elaborate artificial reliabilities of the binary received w...In this paper we present an efficient algorithm to decode linear block codes on binary channels. The main idea consists in using a vote procedure in order to elaborate artificial reliabilities of the binary received word and to present the obtained real vector r as inputs of a SIHO decoder (Soft In/Hard Out). The goal of the latter is to try to find the closest codeword to r in terms of the Euclidean distance. A comparison of the proposed algorithm over the AWGN channel with the Majority logic decoder, Berlekamp-Massey, Bit Flipping, Hartman-Rudolf algorithms and others show that it is more efficient in terms of performance. The complexity of the proposed decoder depends on the weight of the error to decode, on the code structure and also on the used SIHO decoder.展开更多
In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved i...In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction.展开更多
To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric p...To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.展开更多
Turbo code has drawn more and more attractions for high data rate transmission these years especially in W CDMA and CDMA2000 of the third generation mobile communications systems. In this paper, the simulation perfor...Turbo code has drawn more and more attractions for high data rate transmission these years especially in W CDMA and CDMA2000 of the third generation mobile communications systems. In this paper, the simulation performance of turbo code under Rayleigh fading channel and additive white Gaussian channels are depicted. Comparison with the performance of convolutional code are made respect to different parameters, such as pilot length, interleaver size, frame length, mobile velocity and data rate, etc. Faithful results are drawn out.展开更多
In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working princ...In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working principle of ADV212,a Custom-specific mode is used for various video formats firstly. The data can be cached through the FPGA internal RAM and SDRAM Ping-Pong operation. And the working efficiency is greatly promoted. Secondly,this method can realize direct code stream transmission or do it after storage. Through the error correcting coding,the correction ability of the flash memory is highly improved. Lastly,the compression and de-compression circuit boards are involved to specify the performance of the method. The results show that the compression system has a real-time and stable performance. And the compression ratio can be changed arbitrarily by configuring the program. The compression system can be realized and the real-time performance is good with large amount of data.展开更多
A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encode...A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.展开更多
Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on pas...Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on passwords. In recent years, researchers focused on developing simple 3PAKE (S-3PAKE) protocol to gain system e?ciency while preserving security robustness for the system. In this study, we first demonstrate how an undetectable on-line dictionary attack can be successfully applied over three existing S-3PAKE schemes. An error correction code (ECC) based S-3PAKE protocol is then introduced to eliminate the identified authentication weakness.展开更多
A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event ups...A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.展开更多
Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression,...Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.展开更多
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ...In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
文摘With the support from the National Natural Science Foundation of China,Prof.Huang Yanyi(黄岩谊)led a team at Peking University to demonstrate a novel approach,which combined fluorogenic sequencingby-synthesis(SBS)chemistry with an information theory-based error-correction coding scheme to
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金supported in part by the Education Department of Sichuan Province(Grant No.[2022]114).
文摘Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes.
文摘By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.
基金Supported by the National Natural Science Foundation of China(6127117461272492)
文摘In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case when errors occur in multi- ple channels. Importantly, we show the necessary and sufficient conditions on the existence of linear network error correction mul- ticast/broadcast/dispersion maximum distance separable (MDS) code on a matroidal error correction network.
基金The authors extend their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.1/85/42.
文摘The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.
基金Supported by the Postgraduate Project of Military Science of PLA(2013JY431)55th Batch of China Postdoctoral Second-Class on Fund Projects(2014M552656)
文摘The paper review the public-key cryptosystems based on the error correcting codes such as Goppa code, BCH code, RS code, rank distance code, algebraic geometric code as well as LDPC code, and made the comparative analyses of the merits and drawbacks of them. The cryptosystem based on Goppa code has high security, but can be achieved poor. The cryptosystems based on other error correcting codes have higher performance than Goppa code. But there are still some disadvantages to solve. At last, the paper produce an assumption of the Niederreiter cascade combination cryptosystem based on double public-keys under complex circumstances, which has higher performance and security than the traditional cryptosystems.
基金Sponsored by the Ministerial Level Advanced Research Foundation (20304)
文摘A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.
文摘In this paper we present an efficient algorithm to decode linear block codes on binary channels. The main idea consists in using a vote procedure in order to elaborate artificial reliabilities of the binary received word and to present the obtained real vector r as inputs of a SIHO decoder (Soft In/Hard Out). The goal of the latter is to try to find the closest codeword to r in terms of the Euclidean distance. A comparison of the proposed algorithm over the AWGN channel with the Majority logic decoder, Berlekamp-Massey, Bit Flipping, Hartman-Rudolf algorithms and others show that it is more efficient in terms of performance. The complexity of the proposed decoder depends on the weight of the error to decode, on the code structure and also on the used SIHO decoder.
文摘In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction.
基金supported in part by the NSF of China under Grants 62322106,62071131,U2001203,61871136the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+1 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070the Industrial R&D Project of Haoyang Electronic Co.,Ltd.under Grant 2022440002001494.
文摘To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.
文摘Turbo code has drawn more and more attractions for high data rate transmission these years especially in W CDMA and CDMA2000 of the third generation mobile communications systems. In this paper, the simulation performance of turbo code under Rayleigh fading channel and additive white Gaussian channels are depicted. Comparison with the performance of convolutional code are made respect to different parameters, such as pilot length, interleaver size, frame length, mobile velocity and data rate, etc. Faithful results are drawn out.
基金Supported by the National High Technology Research and Development Programme of China(No.863-2-5-1-13B)
文摘In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working principle of ADV212,a Custom-specific mode is used for various video formats firstly. The data can be cached through the FPGA internal RAM and SDRAM Ping-Pong operation. And the working efficiency is greatly promoted. Secondly,this method can realize direct code stream transmission or do it after storage. Through the error correcting coding,the correction ability of the flash memory is highly improved. Lastly,the compression and de-compression circuit boards are involved to specify the performance of the method. The results show that the compression system has a real-time and stable performance. And the compression ratio can be changed arbitrarily by configuring the program. The compression system can be realized and the real-time performance is good with large amount of data.
基金supported in part by National Natural Science Foundation of China under Grant Nos.60573127,60773012,and 60873082Natural Science Foundation of Hunan Province under Grant Nos.07JJ3128 and 2008RS4016+1 种基金Scientific Research Fund of Hunan Provincial Education Department under Grant No.08B011Postdoctoral Science Foundation of China under Grant Nos.20070420184 and 200801341
文摘A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.
基金the National Science Council (Nos. NSC 99-2218-E-011-014 and NSC 100-2219-E-011-002)
文摘Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on passwords. In recent years, researchers focused on developing simple 3PAKE (S-3PAKE) protocol to gain system e?ciency while preserving security robustness for the system. In this study, we first demonstrate how an undetectable on-line dictionary attack can be successfully applied over three existing S-3PAKE schemes. An error correction code (ECC) based S-3PAKE protocol is then introduced to eliminate the identified authentication weakness.
基金the National Natural Science Foundation of China(Nos.12035019,11690041,and 11805244).
文摘A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
基金the National Natural Science Foundation of China(Nos.61071152 and 61271316)the National Basic Research Program (973) of China(Nos.2010CB731406 and 2013CB329605)the National "Twelfth Five-Year" Plan for Science&Technology Support(No.2012BAH38B04)
文摘Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.
文摘In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.