This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncerta...This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.展开更多
This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the dis...This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.展开更多
This paper focuses on the trajectory tracking control problem of unmanned underwater vehicles(UUVs)with unknown dead-zone inputs.The primary objective is to design an adaptive trajectory tracking error constraint cont...This paper focuses on the trajectory tracking control problem of unmanned underwater vehicles(UUVs)with unknown dead-zone inputs.The primary objective is to design an adaptive trajectory tracking error constraint controller using the fully actuated systems(FAs)approach to enable UUVs to asymptotically track target signals.Firstly,a novel error constraint fully actuated systems(ECFAs)approach is proposed by incorporating the tracking error dependent normalized function and barrier function along with time-varying scaling.Secondly,in order to deal with the model uncertainties of the UUVs,adaptive radial basis function neural networks(RBFNNs)is combined with the ECFAs approach.Then,a positive time-varying integral function is introduced to completely eliminate the effect of the residual effect caused by unknown dead-zone inputs,and it is proved that the trajectory tracking error converges to zero asymptotically based on the Lyapunov functions.Finally,the simulation results demonstrate the effectiveness of the designed adaptive controller.展开更多
In this article,a fixed-time tracking control strategy is proposed for a quadrotor UAV(QUAV)with external disturbance and asymmetric output error constraints.Firstly,a dynamic model of the QUAV is transformed into a s...In this article,a fixed-time tracking control strategy is proposed for a quadrotor UAV(QUAV)with external disturbance and asymmetric output error constraints.Firstly,a dynamic model of the QUAV is transformed into a strict feedback system with external disturbance,and it is decoupled into attitude subsystem and position subsystem for simplifying controller design.Secondly,an asymmetric tangent barrier Lyapunov function(ATBLF)is applied to solve the tracking error constraints problem,and a fixed-time control law is designed.Meanwhile,a fixed-time disturbance observer(FTDO)is designed to cope with external disturbance.Then,it is proved that the designed controller guarantees the tracking error remains within the constraint ranges and converges to zero in fixed-time by Lyapunov stability theory.Finally,the effectiveness of the proposed control scheme is verified by numerical simulations.展开更多
Temperature (T) and salinity (S) profiles from conductivity-temperature-depth data collected during the Northern South China Sea Open Cruise from August 16 to September 13, 2008 are assimilated using Ensemble Kalm...Temperature (T) and salinity (S) profiles from conductivity-temperature-depth data collected during the Northern South China Sea Open Cruise from August 16 to September 13, 2008 are assimilated using Ensemble Kalman Filter (EnKF). An adaptive observational error strategy is used to prevent filter from diverging. In the meantime, aiming at the limited improvement in some sites caused by the T and S biases in the model, a T-S constraint scheme is adopted to improve the assimilation performance, where T and S are separately updated at these locations. Validation is performed by comparing assimilated outputs with independent in situ data (satellite remote sensing sea level anomaly (SLA), the OSCAR velocity product and shipboard ADCP). The results show that the new EnKF assimilation scheme can significantly reduce the root mean square error (RMSE) of oceanic T and S compared with the control run and traditional EnKF. The system can also improve the simulation of circulations and SLA.展开更多
离线强化学习旨在仅通过使用预先收集的离线数据集进行策略的有效学习,从而减少与环境直接交互所带来的高昂成本。然而,由于缺少环境对智能体行为的交互反馈,从离线数据集中学习到的策略可能会遇到数据分布偏移的问题,进而导致外推误差...离线强化学习旨在仅通过使用预先收集的离线数据集进行策略的有效学习,从而减少与环境直接交互所带来的高昂成本。然而,由于缺少环境对智能体行为的交互反馈,从离线数据集中学习到的策略可能会遇到数据分布偏移的问题,进而导致外推误差的不断加剧。当前方法多采用策略约束或模仿学习方法来缓解这一问题,但其学习到的策略通常较为保守。针对上述难题,提出一种基于自适应分位数的方法。具体而言,该方法在双Q估计的基础上进一步利用双Q的估计差值大小对分布外未知动作的价值高估情况进行评估,同时结合分位数思想自适应调整分位数来校正过估计偏差。此外,构建分位数优势函数作为策略约束项权重以平衡智能体对数据集的探索和模仿,从而缓解策略学习的保守性。最后在D4RL(datasets for deep data-driven reinforcement learning)数据集上验证算法的有效性,该算法在多个任务数据集上表现优异,同时展现出在不同场景应用下的广泛潜力。展开更多
This article focuses on the high accuracy quasi-synchronous control issue of multiple electrohydraulic systems(MEHS).In order to overcome the negative effects of parameter uncertainty and external load interference of...This article focuses on the high accuracy quasi-synchronous control issue of multiple electrohydraulic systems(MEHS).In order to overcome the negative effects of parameter uncertainty and external load interference of MEHS,a kind of finite-time disturbance observer(FTDO)via terminal sliding mode method is constructed based on the MEHS model to achieve fast and accuracy estimation and compensation ability.To avoid the differential explosion in backstepping iteration,the dynamic surface control is used in this paper to guarantee the follower electrohydraulic nodes synchronize to the leader motion with a better performance.Furthermore,a timevarying barrier Lyapunov function(tvBLF)is adopted during the controller design process to constraint the output tracking error of MEHS in a prescribed performance with time-varying exponential function.As the initial state condition is relax by tvBLF,the input saturation law is also adopted during the controller design process in this paper to restrain the surges of input signals,which can avoid the circuit and mechanical structure damage caused by the volatile input signal.An MEHS experimental bench is constructed to verify the effectiveness of the theoretical conclusions proposed in this paper and the advantages of the proposed conclusions in this paper are illustrated by a series of contradistinctive experimental results.展开更多
基金the National Natural Science Foundation of China, ChinaGrant ID: 11472137。
文摘This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.
基金Supported in Part by the Australian Research Council Under Grant No.DP0988424
文摘This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62273297,62103353,61825304,and 6182500417in part by the Innovative Research Groups of the Natural Science Foundation of Hebei Province under Grant No.E2020203174+2 种基金in part by Hebei Innovation Capability Improvement Plan Project under Grant No.22567619Hin part by Youth Top Talent Project of Hebei Province under Grant No.HY2024050021in part by Post-graduate Innovation Fund Project of Hebei Province under Grant No.CXZZSS2023042。
文摘This paper focuses on the trajectory tracking control problem of unmanned underwater vehicles(UUVs)with unknown dead-zone inputs.The primary objective is to design an adaptive trajectory tracking error constraint controller using the fully actuated systems(FAs)approach to enable UUVs to asymptotically track target signals.Firstly,a novel error constraint fully actuated systems(ECFAs)approach is proposed by incorporating the tracking error dependent normalized function and barrier function along with time-varying scaling.Secondly,in order to deal with the model uncertainties of the UUVs,adaptive radial basis function neural networks(RBFNNs)is combined with the ECFAs approach.Then,a positive time-varying integral function is introduced to completely eliminate the effect of the residual effect caused by unknown dead-zone inputs,and it is proved that the trajectory tracking error converges to zero asymptotically based on the Lyapunov functions.Finally,the simulation results demonstrate the effectiveness of the designed adaptive controller.
基金supported by Science and Technology Project of Hebei Education Department under Grant No.ZD2022012the Natural Science Foundation of Hebei Province under Grant Nos.F2020203105 and F2022203085+1 种基金the National Natural Science Foundation of China under Grant No.62073234Central Government Guided Local Science and Technology Development Fund Project under Grant No.236Z1601G。
文摘In this article,a fixed-time tracking control strategy is proposed for a quadrotor UAV(QUAV)with external disturbance and asymmetric output error constraints.Firstly,a dynamic model of the QUAV is transformed into a strict feedback system with external disturbance,and it is decoupled into attitude subsystem and position subsystem for simplifying controller design.Secondly,an asymmetric tangent barrier Lyapunov function(ATBLF)is applied to solve the tracking error constraints problem,and a fixed-time control law is designed.Meanwhile,a fixed-time disturbance observer(FTDO)is designed to cope with external disturbance.Then,it is proved that the designed controller guarantees the tracking error remains within the constraint ranges and converges to zero in fixed-time by Lyapunov stability theory.Finally,the effectiveness of the proposed control scheme is verified by numerical simulations.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA10010405the Promgram of Guangdong Province Department of Science and Technology No.2012A032100004+1 种基金the National Natural Science Foundation of China under contract Nos 41476012,41521005 and 41406131the Knowledge Innovation Program of the Chinese Academy of Sciences under contract Nos SQ201001 and SQ201205
文摘Temperature (T) and salinity (S) profiles from conductivity-temperature-depth data collected during the Northern South China Sea Open Cruise from August 16 to September 13, 2008 are assimilated using Ensemble Kalman Filter (EnKF). An adaptive observational error strategy is used to prevent filter from diverging. In the meantime, aiming at the limited improvement in some sites caused by the T and S biases in the model, a T-S constraint scheme is adopted to improve the assimilation performance, where T and S are separately updated at these locations. Validation is performed by comparing assimilated outputs with independent in situ data (satellite remote sensing sea level anomaly (SLA), the OSCAR velocity product and shipboard ADCP). The results show that the new EnKF assimilation scheme can significantly reduce the root mean square error (RMSE) of oceanic T and S compared with the control run and traditional EnKF. The system can also improve the simulation of circulations and SLA.
文摘离线强化学习旨在仅通过使用预先收集的离线数据集进行策略的有效学习,从而减少与环境直接交互所带来的高昂成本。然而,由于缺少环境对智能体行为的交互反馈,从离线数据集中学习到的策略可能会遇到数据分布偏移的问题,进而导致外推误差的不断加剧。当前方法多采用策略约束或模仿学习方法来缓解这一问题,但其学习到的策略通常较为保守。针对上述难题,提出一种基于自适应分位数的方法。具体而言,该方法在双Q估计的基础上进一步利用双Q的估计差值大小对分布外未知动作的价值高估情况进行评估,同时结合分位数思想自适应调整分位数来校正过估计偏差。此外,构建分位数优势函数作为策略约束项权重以平衡智能体对数据集的探索和模仿,从而缓解策略学习的保守性。最后在D4RL(datasets for deep data-driven reinforcement learning)数据集上验证算法的有效性,该算法在多个任务数据集上表现优异,同时展现出在不同场景应用下的广泛潜力。
基金This study was co-supported by the National Natural Science Foundation of China(Nos.52175046,51975024,and 12072068)Sichuan Science and Technology Program(Nos.2022JDRC0018 and 2022YFG0341).
文摘This article focuses on the high accuracy quasi-synchronous control issue of multiple electrohydraulic systems(MEHS).In order to overcome the negative effects of parameter uncertainty and external load interference of MEHS,a kind of finite-time disturbance observer(FTDO)via terminal sliding mode method is constructed based on the MEHS model to achieve fast and accuracy estimation and compensation ability.To avoid the differential explosion in backstepping iteration,the dynamic surface control is used in this paper to guarantee the follower electrohydraulic nodes synchronize to the leader motion with a better performance.Furthermore,a timevarying barrier Lyapunov function(tvBLF)is adopted during the controller design process to constraint the output tracking error of MEHS in a prescribed performance with time-varying exponential function.As the initial state condition is relax by tvBLF,the input saturation law is also adopted during the controller design process in this paper to restrain the surges of input signals,which can avoid the circuit and mechanical structure damage caused by the volatile input signal.An MEHS experimental bench is constructed to verify the effectiveness of the theoretical conclusions proposed in this paper and the advantages of the proposed conclusions in this paper are illustrated by a series of contradistinctive experimental results.