喀斯特地区特殊的地表、地下侵蚀产沙是引发石漠化发生发展的重要物理过程。以喀斯特山地石漠化过程中不同石漠化状况的裸坡面为研究对象,通过模拟其地表微地貌及地下孔(裂)隙构造特征,采用人工模拟降雨试验研究其地表及地下侵蚀产沙特...喀斯特地区特殊的地表、地下侵蚀产沙是引发石漠化发生发展的重要物理过程。以喀斯特山地石漠化过程中不同石漠化状况的裸坡面为研究对象,通过模拟其地表微地貌及地下孔(裂)隙构造特征,采用人工模拟降雨试验研究其地表及地下侵蚀产沙特征。结果表明:无石漠化、潜在石漠化和轻度石漠化的裸坡在相同条件下的地表产沙量总体上高于地下产沙量,且10 min降雨时段内地下产沙量在0~100 g之间。不同石漠化强度的裸坡地表、地下侵蚀产沙量均随雨强的增大而增加;小雨强(30~80 mm h^(-1))下,随着石漠化强度加剧其地表越不易发生侵蚀,而石漠化强度达到一定程度时(基岩裸露率40%)土壤流失以地下流失为主;大雨强(150 mm h^(-1))下,地表产沙量及其分配比例随基岩裸露率变化不明显,而地下产沙量则呈先增加后减小的变化且在基岩裸露率为30%时达到最大。不同石漠化强度的裸坡地表产沙量及其分配比例随地下孔(裂)隙度变化不明显,地下产沙量及其分配比例总体上随地下孔(裂)隙度增加而增加;在不同地下孔(裂)隙度下(1%~5%),地表、地下产沙量及其分配比例随基岩裸露率变化(10%~50%)差异较大。研究结果对认识喀斯特地区石漠化发生发展机制、揭示土壤侵蚀特征、防治地表地下水土流失具有重要的理论和现实意义。展开更多
The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new eros...The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.展开更多
文摘喀斯特地区特殊的地表、地下侵蚀产沙是引发石漠化发生发展的重要物理过程。以喀斯特山地石漠化过程中不同石漠化状况的裸坡面为研究对象,通过模拟其地表微地貌及地下孔(裂)隙构造特征,采用人工模拟降雨试验研究其地表及地下侵蚀产沙特征。结果表明:无石漠化、潜在石漠化和轻度石漠化的裸坡在相同条件下的地表产沙量总体上高于地下产沙量,且10 min降雨时段内地下产沙量在0~100 g之间。不同石漠化强度的裸坡地表、地下侵蚀产沙量均随雨强的增大而增加;小雨强(30~80 mm h^(-1))下,随着石漠化强度加剧其地表越不易发生侵蚀,而石漠化强度达到一定程度时(基岩裸露率40%)土壤流失以地下流失为主;大雨强(150 mm h^(-1))下,地表产沙量及其分配比例随基岩裸露率变化不明显,而地下产沙量则呈先增加后减小的变化且在基岩裸露率为30%时达到最大。不同石漠化强度的裸坡地表产沙量及其分配比例随地下孔(裂)隙度变化不明显,地下产沙量及其分配比例总体上随地下孔(裂)隙度增加而增加;在不同地下孔(裂)隙度下(1%~5%),地表、地下产沙量及其分配比例随基岩裸露率变化(10%~50%)差异较大。研究结果对认识喀斯特地区石漠化发生发展机制、揭示土壤侵蚀特征、防治地表地下水土流失具有重要的理论和现实意义。
基金funded by the National Key Research and Development Program of China (2017YFC0504505)the National Key Technology Support Program of China during the Twelfth Five-year Plan Period (2013BAC05B02, 2013BAC05B04)
文摘The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.