It is a huge challenge for metal oxide semiconductor gas sensors to inspect volatile organic compounds(VOCs)at room temperature(RT).Herein,the effective utilization of cerium oxide(CeO_(2))nanowires for RT detection o...It is a huge challenge for metal oxide semiconductor gas sensors to inspect volatile organic compounds(VOCs)at room temperature(RT).Herein,the effective utilization of cerium oxide(CeO_(2))nanowires for RT detection of VOCs was realized via regulating its surface chemical state.Oxygen vacancy engineering on CeO_(2)nanowires,synthesized via hydrothermal method,can be manipulated by annealing under various controlled atmospheres.The sample annealed under 5%H_(2)+95%Ar condition exhibited outstanding RT sensing properties,displaying a high response of 16.7 towards 20 ppm linalool,a fast response and recovery time(16 and 121 s,respectively),and a low detection of limit of 0.54 ppm.The enhanced sensing performance could be ascribed for the synergistic effects of its nanowire morphology,the large specific surface area(83.95 m^(2)/g),and the formation of extensive oxygen vacancy accompanied by an increase in Ce^(3+).Additionally,the practicability of the sensor was verified via two varieties of rice(Indica and Japonica rice)stored in various periods(1,3,5,7,15,and 30 d).The experimental results revealed that the sensor was able to distinguish Indica rice from Japonica rice.Accordingly,the as-developed sensor delivers a strategic material to develop high-performance RT electronic nose equipment for monitoring rice quality.展开更多
基金supported by the National Natural Science Foundation of China(No.51872254)the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)the Excellent Doctoral Dissertation Fund of Yangzhou University(2022).
文摘It is a huge challenge for metal oxide semiconductor gas sensors to inspect volatile organic compounds(VOCs)at room temperature(RT).Herein,the effective utilization of cerium oxide(CeO_(2))nanowires for RT detection of VOCs was realized via regulating its surface chemical state.Oxygen vacancy engineering on CeO_(2)nanowires,synthesized via hydrothermal method,can be manipulated by annealing under various controlled atmospheres.The sample annealed under 5%H_(2)+95%Ar condition exhibited outstanding RT sensing properties,displaying a high response of 16.7 towards 20 ppm linalool,a fast response and recovery time(16 and 121 s,respectively),and a low detection of limit of 0.54 ppm.The enhanced sensing performance could be ascribed for the synergistic effects of its nanowire morphology,the large specific surface area(83.95 m^(2)/g),and the formation of extensive oxygen vacancy accompanied by an increase in Ce^(3+).Additionally,the practicability of the sensor was verified via two varieties of rice(Indica and Japonica rice)stored in various periods(1,3,5,7,15,and 30 d).The experimental results revealed that the sensor was able to distinguish Indica rice from Japonica rice.Accordingly,the as-developed sensor delivers a strategic material to develop high-performance RT electronic nose equipment for monitoring rice quality.