The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first dis...The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.展开更多
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m...The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
Storm surge events(SSEs)involve multiple hazard-causing factors,such as surges,extreme rainfall,strong winds,waves,and ocean currents,which have destructive impacts on coastal regions.For a quantitative multi-hazard a...Storm surge events(SSEs)involve multiple hazard-causing factors,such as surges,extreme rainfall,strong winds,waves,and ocean currents,which have destructive impacts on coastal regions.For a quantitative multi-hazard assessment of SSEs,this study introduced the concept of the storm surge event seawater-atmosphere system(SSE-SAS)and proposed the system energy equivalence(SEE)model from a systemic energy perspective.SEE was obtained by employing a parameterization approach,and the hazard index(HI)and the concept of most significant hazard(MSH)were adopted to evaluate the severity of SSE-SAS.SEE at five stations in the Shandong Peninsula was calculated from 2005 to 2019,and probability analysis and hazard assessment were further conducted.Results show that the SEE of SSE-SAS ranges from 0.029×10^(3) to 30.418×10^(3) J/m^(2),and it exhibits an insignificant decreasing trend from 2005 to 2019.The SEE of SSE-SAS in the west of the Shandong Peninsula is greater than that in the east.Moreover,storm waves,storm surges,and storm rainfall are the major contributors to SEE,which exhibit different spatial patterns and characters in different SSE-SAS types.The HI of SSE-SAS at five stations is no more than medium hazard level,with MSH at return periods of 2-to 4-year level.This study provides a new approach for quantifying multi-hazard SSEs,which offers scientific insights for regional multi-hazard risk reduction and mitigation efforts.展开更多
The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation mode...The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.展开更多
Primary challenges with a forest inventory program are surveyors with various levels of experience and the turnover of inexperienced surveyors.Few studies have looked at the consistency of an instrument’s results amo...Primary challenges with a forest inventory program are surveyors with various levels of experience and the turnover of inexperienced surveyors.Few studies have looked at the consistency of an instrument’s results among inexperienced surveyors.Most studies have assessed whether instruments were significantly different.These tests do not indicate whether instruments were statistically equivalent,i.e.,that choosing either one would be acceptable under a certain level of tolerance.This study evaluated the consistency and statistical equivalence among instruments for measuring diameter at breast height(DBH)and for total tree height(HT)among inexperienced surveyors.The study was conducted as a randomized experiment with students from an introductory tree measurement course,using four types of DBH and HT instruments,and with different tree attributes.For DBH,the results show that D-tape was the most consistent across tree attributes and teams of inexperienced surveyors and was only statistically interchangeable with Caliper with a tolerance≥3 cm.For HT,Ultrasound was the most consistent but only statistically interchangeable with Laser with a tolerance≥8 m.A single type of instrument for measuring DBH and for HT is recommended,especially when field crews may be a mixture of experienced and inexperienced surveyors.Our study provides initial recommendations on the choice of instruments when either purchasing new ones or replacing old ones in forest inventories.展开更多
We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalen...We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.展开更多
The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fews...The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.展开更多
The concept of equivalence,which expresses the relations between the source text and the target text in the translation process,can be defined as finding the closest equivalent of the source text in the target text.In...The concept of equivalence,which expresses the relations between the source text and the target text in the translation process,can be defined as finding the closest equivalent of the source text in the target text.In order for the translated text to have the same taste in the target language,the equivalence between the two languages should be good.Many novels have been translated from English to Arabic.This translation was translated from English to Arabic.Jane Eyre is in the Victorian England.The novel is about love between two people of different classes,underlining the pressures,class distinction,male domination in society.Jane Eyre,who was one of the first novels about women’s freedom and rights,is also one of the most important works of romanticism.The author was inspired by his own life.In this study,language plays in Arabic translation of famous novelist Charlotte Bronte’s Jane Eyre were examined in terms of equivalence.In addition to semantic,syntactic,linguistic,and stylistic dimensions,translation of language games such as proverb,idiom,metaphor,personification,and comparison,which are the main material of a decorated language,is emphasized and their equivalence is interpreted in the light of the theories of translation.The analysis of the selected sample sentences from the novel within the context of translation criticism shows that the translator preserves the form and content of the source text in a significant way and provides a translation equivalent to the original in terms of linguistic,syntactic,and semantic.The Arabic reader seems to be able to understand the language games in English in a similar way in their own language.展开更多
To address the issue that traditional finite element methods cannot fully consider the semi-infinite earth strata and have lower solution accuracy,a new equivalent force model for induced deformation during oil and ga...To address the issue that traditional finite element methods cannot fully consider the semi-infinite earth strata and have lower solution accuracy,a new equivalent force model for induced deformation during oil and gas reservoir development is derived from the perspective of semi-infinite strata.A brand-new volume boundary element numerical method solution has been developed and verified and tested.The influences of internal flow and flow boundary of the reservoir on strata deformation are equivalent to the impacts on strata deformation when external forces act at the interior and boundary of the reservoir,respectively.Calculation methods for the flow equivalent force and boundary equivalent force are provided.The deformation solution at any point in the strata can be obtained through the convolution of flow equivalent forces,boundary equivalent forces and Green’s functions.After discretization,the deformation solution at any point in the strata can be obtained by multiplying the grid boundary equivalent forces,grid flow equivalent forces with their corresponding grid boundary sources and grid volume sources respectively,and then summing them up.This numerical method is termed the Volumetric Boundary Element Method(VBEM).Compared with traditional commercial simulators,VBEM fully considers the effects of reservoir flow boundaries,pore pressure gradient fields within the reservoir,and fluid mass changes within pores on formation deformation.It eliminates the need for meshing outside the reservoir,achieves significantly improved solution accuracy,and provides a new technical framework for simulating deformation induced by reservoir development.展开更多
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy...The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.展开更多
One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this p...One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.展开更多
Recent engineering applications increasingly adopt smart materials,whose mechanical responses are sensitive to magnetic and electric fields.In this context,new and computationally efficient modeling strategies are ess...Recent engineering applications increasingly adopt smart materials,whose mechanical responses are sensitive to magnetic and electric fields.In this context,new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately.Therefore,the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures.The fundamental relations account for the full coupling between the electric field,magnetic field,and mechanical elasticity.The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach.Higher-order polynomials are selected,allowing for the assessment of prescribed values of the configuration variables at the top and bottom sides of solids.In addition,an effective strategy is provided for modeling general surface distributions of mechanical pressures and electromagnetic external fluxes.The model is based on a continuum-based formulation which employs an analytical homogenization of the multifield material properties,based on Mori&Tanaka approach,of a magneto-electro-elastic composite material obtained from a piezoelectric and a piezomagnetic phase,with coupled magneto-electro-elastic effects.A semi-analytical Navier solution is applied to the fundamental equations,and an efficient post-processing equilibrium-based procedure is here used,based on the numerical assessment with the Generalized Differential Quadrature(GDQ)method,to recover the response of three-dimensional shells.The formulation is validated through various examples,investigating the multifield response of panels of different curvatures and lamination schemes.An efficient homogenization procedure,based on the Mori&Tanaka approach,is employed to obtain the three-dimensional constitutive relation of magneto-electro-elastic materials.Each model is validated against three-dimensional finite-element simulations,as developed in commercial codes.Furthermore,the full coupling effect between the electric and magnetic response is evaluated via a parametric investigation,with useful insights for design purposes of many engineering applications.The paper,thus,provides a formulation for the magneto-electro-elastic analysis of laminated structures,with a high computational efficiency,since it provides results with three-dimensional capabilities with a two-dimensional formulation.The adoption of higher-order theories,indeed,allows us to efficiently predict not only the mechanical response of the structure as happens in existing literature,but also the through-the-thickness distribution of electric and magnetic variables.A novel higher-order theory has been proposed in this work for the magneto-electro-elastic analysis of laminated shell structures with varying curvatures.This theory employs a generalized method to model the distribution of the displacement field components,electrostatic,and magneto-static potential,accounting for higher-order polynomials.The thickness functions have been defined to prescribe the arbitrary values of configuration variables at the top and bottom surfaces,even though the model is ESL-based.The fundamental governing equations have been derived in curvilinear principal coordinates,considering all coupling effects among different physical phenomena,including piezoelectric,piezomagnetic,and magneto-electric effects.A homogenization algorithm based on a Mori&Tanaka approach has been adopted to obtain the equivalent magneto-electro-mechanical properties of a two-phase transversely isotropic composite.In addition,an effective method has been adopted involving the external loads in terms of surface tractions,as well as the electric and magnetic fluxes.In the post-processing stage,a GDQ-based procedure provides the actual 3D response of a doubly-curved solid.The model has been validated through significant numerical examples,showing that the results of this semi-analytical theory align well with those obtained from 3D numerical models from commercial codes.In particular,the accuracy of the model has been verified for lamination schemes with soft layers and various curvatures under different loading conditions.Moreover,this formulation has been used to predict the effect of combined electric and magnetic loads on the mechanical response of panels with different curvatures and lamination schemes.As a consequence,this theory can be applied in engineering applications where the combined effect of electric and magnetic loads is crucial,thus facilitating their study and design.An existing limitation of this study is that the solution is that it is derived only for structures with uniform curvature,cross-ply lamination scheme,and simply supported boundary conditions.Furthermore,it requires that each lamina within the stacking sequence exhibits magneto-electro-elastic behavior.Therefore,at the present stage,it cannot be used for multifield analysis of classical composite structures with magneto-electric patches.A further enhancement of the research work could be the derivation of a solution employing a numerical technique,to overcome the limitations of the Navier method.In this way,the same theory may be adopted to predict the multifield response of structures with variable curvatures and thickness,as well as anisotropic materials and more complicated boundary conditions.Acknowledgement:The authors are grateful to the Department of Innovation Engineering of Univer-sity of Salento for the support.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in dif...Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.展开更多
With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing hig...With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods,this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification.To resolve the scalability issue of coupled transmission and distribution power systems,clustering is first carried out based on the distribution system states.As the data and models of the transmission system and distribution systems are not shared.For the transmission system,equating the power transmitted from the transmission system to the distribution system is the same as equating the distribution system.Further,the power transmitted from the transmission system to different types of distribution systems is equivalent to different polynomial equivalent load models.Then,a parameter identification method is proposed to obtain the parameters of the equivalent load model.Finally,a transmission and distribution collaborative state estimation model is constructed based on the equivalent load model.The results of the numerical analysis show that compared with the traditional master-slave splitting method,the proposed method significantly enhances computational efficiency while maintaining high estimation accuracy.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed...Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.展开更多
This study presents a generalized two-dimensional model for evaluating the stationary hygro-thermo-mechanical response of laminated shell structures made of advanced materials.It introduces a generalized kinematic mod...This study presents a generalized two-dimensional model for evaluating the stationary hygro-thermo-mechanical response of laminated shell structures made of advanced materials.It introduces a generalized kinematic model,enabling the assessment of arbitrary values of temperature variation and mass concentration variation for the unvaried configuration at the top and bottom surfaces.This is achieved through the Equivalent Layer-Wise description of the unknown field variable using higher-order polynomials and zigzag functions.In addition,an elastic foundation is modeled utilizing the Winkler-Pasternak theory.The fundamental equations,derived from the total free energy of the system,are solved analytically using Navier’s method.Then,the Fourier-based generalized differential quadrature numerical method is adopted to efficiently recover the through-the-thickness distribution of secondary variables in agreement with the hygro-thermal loading conditions.The formulation is applied in some examples of investigation where the response of panels of different curvature and lamination schemes is evaluated under external hygro-thermal fluxes and prescribed values of temperature and moisture concentration.In addition,this study investigates the effect of the hygro-thermal coupling due to Dufour and Soret effect.The present formulation is verified to be a valuable tool for reducing computational effort and determining the effect on the mechanical response of laminated structures in a thermal and hygrometric environment.展开更多
基金Supported by the National Natural Science Foundation of China(12271154)the Natural Science Foundation of Hunan Province(2022JJ30234)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231032)。
文摘The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.
基金supported by the National Key R&D Program of China(Grant No.2021YFC2501700).
文摘The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by the Key Laboratory of Coastal Science and Integrated Management,Ministry of Natural Resources(No.2022COSIMQ002)the Shandong Provincial Social Science Planning Research Project(No.22CXSXJ15)+1 种基金the Guangxi Key Laboratory of Marine Environmental Science,Guangxi Academy of Sciences(No.GXKLHY21-04)the Hainan Province Marxism Project General Program(No.2023HNMGC03).
文摘Storm surge events(SSEs)involve multiple hazard-causing factors,such as surges,extreme rainfall,strong winds,waves,and ocean currents,which have destructive impacts on coastal regions.For a quantitative multi-hazard assessment of SSEs,this study introduced the concept of the storm surge event seawater-atmosphere system(SSE-SAS)and proposed the system energy equivalence(SEE)model from a systemic energy perspective.SEE was obtained by employing a parameterization approach,and the hazard index(HI)and the concept of most significant hazard(MSH)were adopted to evaluate the severity of SSE-SAS.SEE at five stations in the Shandong Peninsula was calculated from 2005 to 2019,and probability analysis and hazard assessment were further conducted.Results show that the SEE of SSE-SAS ranges from 0.029×10^(3) to 30.418×10^(3) J/m^(2),and it exhibits an insignificant decreasing trend from 2005 to 2019.The SEE of SSE-SAS in the west of the Shandong Peninsula is greater than that in the east.Moreover,storm waves,storm surges,and storm rainfall are the major contributors to SEE,which exhibit different spatial patterns and characters in different SSE-SAS types.The HI of SSE-SAS at five stations is no more than medium hazard level,with MSH at return periods of 2-to 4-year level.This study provides a new approach for quantifying multi-hazard SSEs,which offers scientific insights for regional multi-hazard risk reduction and mitigation efforts.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272437 and 52272370)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0635)。
文摘The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.
文摘Primary challenges with a forest inventory program are surveyors with various levels of experience and the turnover of inexperienced surveyors.Few studies have looked at the consistency of an instrument’s results among inexperienced surveyors.Most studies have assessed whether instruments were significantly different.These tests do not indicate whether instruments were statistically equivalent,i.e.,that choosing either one would be acceptable under a certain level of tolerance.This study evaluated the consistency and statistical equivalence among instruments for measuring diameter at breast height(DBH)and for total tree height(HT)among inexperienced surveyors.The study was conducted as a randomized experiment with students from an introductory tree measurement course,using four types of DBH and HT instruments,and with different tree attributes.For DBH,the results show that D-tape was the most consistent across tree attributes and teams of inexperienced surveyors and was only statistically interchangeable with Caliper with a tolerance≥3 cm.For HT,Ultrasound was the most consistent but only statistically interchangeable with Laser with a tolerance≥8 m.A single type of instrument for measuring DBH and for HT is recommended,especially when field crews may be a mixture of experienced and inexperienced surveyors.Our study provides initial recommendations on the choice of instruments when either purchasing new ones or replacing old ones in forest inventories.
基金Supported by the Natural Science Foundation of Xiamen(Grant No.3502Z20227184)the Natural Science Foundation of Fujian Province(Grant No.2022J01034)+2 种基金the Natural Science Foundation of Shanghai(Grant No.23ZR1435100)the National Natural Science Foundation of China(Grant Nos.12271448 and 12301054)the Fundamental Research Funds for Central Universities of China(Grant No.20720220043)。
文摘We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.
基金supported by Natural Science Foundation of Fujian Province(2022I0019)Scientific Research Foundation for Jimei University(ZQ2024041,ZQ2024042).
文摘The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.
文摘The concept of equivalence,which expresses the relations between the source text and the target text in the translation process,can be defined as finding the closest equivalent of the source text in the target text.In order for the translated text to have the same taste in the target language,the equivalence between the two languages should be good.Many novels have been translated from English to Arabic.This translation was translated from English to Arabic.Jane Eyre is in the Victorian England.The novel is about love between two people of different classes,underlining the pressures,class distinction,male domination in society.Jane Eyre,who was one of the first novels about women’s freedom and rights,is also one of the most important works of romanticism.The author was inspired by his own life.In this study,language plays in Arabic translation of famous novelist Charlotte Bronte’s Jane Eyre were examined in terms of equivalence.In addition to semantic,syntactic,linguistic,and stylistic dimensions,translation of language games such as proverb,idiom,metaphor,personification,and comparison,which are the main material of a decorated language,is emphasized and their equivalence is interpreted in the light of the theories of translation.The analysis of the selected sample sentences from the novel within the context of translation criticism shows that the translator preserves the form and content of the source text in a significant way and provides a translation equivalent to the original in terms of linguistic,syntactic,and semantic.The Arabic reader seems to be able to understand the language games in English in a similar way in their own language.
基金Supported by the China National Natural Science Foundation Project(52274048)Beijing Natural Science Foundation Project(3222037)。
文摘To address the issue that traditional finite element methods cannot fully consider the semi-infinite earth strata and have lower solution accuracy,a new equivalent force model for induced deformation during oil and gas reservoir development is derived from the perspective of semi-infinite strata.A brand-new volume boundary element numerical method solution has been developed and verified and tested.The influences of internal flow and flow boundary of the reservoir on strata deformation are equivalent to the impacts on strata deformation when external forces act at the interior and boundary of the reservoir,respectively.Calculation methods for the flow equivalent force and boundary equivalent force are provided.The deformation solution at any point in the strata can be obtained through the convolution of flow equivalent forces,boundary equivalent forces and Green’s functions.After discretization,the deformation solution at any point in the strata can be obtained by multiplying the grid boundary equivalent forces,grid flow equivalent forces with their corresponding grid boundary sources and grid volume sources respectively,and then summing them up.This numerical method is termed the Volumetric Boundary Element Method(VBEM).Compared with traditional commercial simulators,VBEM fully considers the effects of reservoir flow boundaries,pore pressure gradient fields within the reservoir,and fluid mass changes within pores on formation deformation.It eliminates the need for meshing outside the reservoir,achieves significantly improved solution accuracy,and provides a new technical framework for simulating deformation induced by reservoir development.
文摘The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.
基金support of the project from the National Key R&D Program of China,Research and Application of Sensing System for Cross-regional Complex Oil&Gas Pipeline Network Safe and Efficiency Operational Status Monitoring(Grant No.2022YFB3207603).
文摘One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.
基金funded by the Project PNRR M4C2—Innovation Grant DIRECT:Digital twIns foR EmergenCy supporT—CUP F83C22000740001.
文摘Recent engineering applications increasingly adopt smart materials,whose mechanical responses are sensitive to magnetic and electric fields.In this context,new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately.Therefore,the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures.The fundamental relations account for the full coupling between the electric field,magnetic field,and mechanical elasticity.The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach.Higher-order polynomials are selected,allowing for the assessment of prescribed values of the configuration variables at the top and bottom sides of solids.In addition,an effective strategy is provided for modeling general surface distributions of mechanical pressures and electromagnetic external fluxes.The model is based on a continuum-based formulation which employs an analytical homogenization of the multifield material properties,based on Mori&Tanaka approach,of a magneto-electro-elastic composite material obtained from a piezoelectric and a piezomagnetic phase,with coupled magneto-electro-elastic effects.A semi-analytical Navier solution is applied to the fundamental equations,and an efficient post-processing equilibrium-based procedure is here used,based on the numerical assessment with the Generalized Differential Quadrature(GDQ)method,to recover the response of three-dimensional shells.The formulation is validated through various examples,investigating the multifield response of panels of different curvatures and lamination schemes.An efficient homogenization procedure,based on the Mori&Tanaka approach,is employed to obtain the three-dimensional constitutive relation of magneto-electro-elastic materials.Each model is validated against three-dimensional finite-element simulations,as developed in commercial codes.Furthermore,the full coupling effect between the electric and magnetic response is evaluated via a parametric investigation,with useful insights for design purposes of many engineering applications.The paper,thus,provides a formulation for the magneto-electro-elastic analysis of laminated structures,with a high computational efficiency,since it provides results with three-dimensional capabilities with a two-dimensional formulation.The adoption of higher-order theories,indeed,allows us to efficiently predict not only the mechanical response of the structure as happens in existing literature,but also the through-the-thickness distribution of electric and magnetic variables.A novel higher-order theory has been proposed in this work for the magneto-electro-elastic analysis of laminated shell structures with varying curvatures.This theory employs a generalized method to model the distribution of the displacement field components,electrostatic,and magneto-static potential,accounting for higher-order polynomials.The thickness functions have been defined to prescribe the arbitrary values of configuration variables at the top and bottom surfaces,even though the model is ESL-based.The fundamental governing equations have been derived in curvilinear principal coordinates,considering all coupling effects among different physical phenomena,including piezoelectric,piezomagnetic,and magneto-electric effects.A homogenization algorithm based on a Mori&Tanaka approach has been adopted to obtain the equivalent magneto-electro-mechanical properties of a two-phase transversely isotropic composite.In addition,an effective method has been adopted involving the external loads in terms of surface tractions,as well as the electric and magnetic fluxes.In the post-processing stage,a GDQ-based procedure provides the actual 3D response of a doubly-curved solid.The model has been validated through significant numerical examples,showing that the results of this semi-analytical theory align well with those obtained from 3D numerical models from commercial codes.In particular,the accuracy of the model has been verified for lamination schemes with soft layers and various curvatures under different loading conditions.Moreover,this formulation has been used to predict the effect of combined electric and magnetic loads on the mechanical response of panels with different curvatures and lamination schemes.As a consequence,this theory can be applied in engineering applications where the combined effect of electric and magnetic loads is crucial,thus facilitating their study and design.An existing limitation of this study is that the solution is that it is derived only for structures with uniform curvature,cross-ply lamination scheme,and simply supported boundary conditions.Furthermore,it requires that each lamina within the stacking sequence exhibits magneto-electro-elastic behavior.Therefore,at the present stage,it cannot be used for multifield analysis of classical composite structures with magneto-electric patches.A further enhancement of the research work could be the derivation of a solution employing a numerical technique,to overcome the limitations of the Navier method.In this way,the same theory may be adopted to predict the multifield response of structures with variable curvatures and thickness,as well as anisotropic materials and more complicated boundary conditions.Acknowledgement:The authors are grateful to the Department of Innovation Engineering of Univer-sity of Salento for the support.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
文摘Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.
基金State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023121).
文摘With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods,this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification.To resolve the scalability issue of coupled transmission and distribution power systems,clustering is first carried out based on the distribution system states.As the data and models of the transmission system and distribution systems are not shared.For the transmission system,equating the power transmitted from the transmission system to the distribution system is the same as equating the distribution system.Further,the power transmitted from the transmission system to different types of distribution systems is equivalent to different polynomial equivalent load models.Then,a parameter identification method is proposed to obtain the parameters of the equivalent load model.Finally,a transmission and distribution collaborative state estimation model is constructed based on the equivalent load model.The results of the numerical analysis show that compared with the traditional master-slave splitting method,the proposed method significantly enhances computational efficiency while maintaining high estimation accuracy.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200in part by Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund (L233009)+4 种基金in part by National Natural Science Foundation of China under Grant No. 62374099in part by the Tsinghua-Toyota Joint Research Fundin part by the Daikin Tsinghua Union Programin part by Independent Research Program of School of Integrated Circuits,Tsinghua Universitysponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Program
文摘Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.
基金funded by the Project PNRR M4C2—Innovation grant DIRECT:Digital twIns foR EmergenCy supporT—CUP F83C22000740001.
文摘This study presents a generalized two-dimensional model for evaluating the stationary hygro-thermo-mechanical response of laminated shell structures made of advanced materials.It introduces a generalized kinematic model,enabling the assessment of arbitrary values of temperature variation and mass concentration variation for the unvaried configuration at the top and bottom surfaces.This is achieved through the Equivalent Layer-Wise description of the unknown field variable using higher-order polynomials and zigzag functions.In addition,an elastic foundation is modeled utilizing the Winkler-Pasternak theory.The fundamental equations,derived from the total free energy of the system,are solved analytically using Navier’s method.Then,the Fourier-based generalized differential quadrature numerical method is adopted to efficiently recover the through-the-thickness distribution of secondary variables in agreement with the hygro-thermal loading conditions.The formulation is applied in some examples of investigation where the response of panels of different curvature and lamination schemes is evaluated under external hygro-thermal fluxes and prescribed values of temperature and moisture concentration.In addition,this study investigates the effect of the hygro-thermal coupling due to Dufour and Soret effect.The present formulation is verified to be a valuable tool for reducing computational effort and determining the effect on the mechanical response of laminated structures in a thermal and hygrometric environment.