The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used...The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used to acquire the thermal conductivity from heat current auto-correlation function(HCACF). HCACF of the selected BNNR system shows a tendency of a very fast decay and then be followed by a very slow decay process,finally,approaching zero approximately within 3 ps. The convergence of lattice thermal conductivity demonstrates that the thermal conductivity of BNNR can be simulated by EMD simulation using several thousands of atoms with periodic boundary conditions. The results show that BNNR exhibit lower thermal conductivity than that of boron nitride(BN) monolayer,which indicates that phonons boundary scatting significantly suppresses the phonons transport in BNNR. Vacancies in BNNR greatly affect the lattice thermal conductivity,in detail,only 1% concentration of vacancies in BNNR induce a 60% reduction of the lattice thermal conductivity at room temperature.展开更多
High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions b...High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti_(3)C_(2)T_(x)nanosheets within fibers,which restricts their properties.Herein,a versatile strategy is proposed to construct wet-spun Ti_(3)C_(2)T_(x)fibers,in which trace amounts of borate form strong interlayer crosslinking between Ti_(3)C_(2)T_(x)nanosheets to significantly enhance interactions as supported by density functional theory calculations,thereby reducing interlayer spacing,diminishing microscopic voids and promoting orientation of the nanosheets.The resultant Ti_(3)C_(2)T_(x)fibers exhibit exceptional electrical conductivity of 7781 S cm^(-1)and mechanical properties,including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa.Notably,employing equilibrium molecular dynamics simulations,finite element analysis,and cross-wire geometry method,it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti_(3)C_(2)T_(x)fibers to 13 W m^(-1)K^(-1),marking the first systematic study on thermal conductivity of Ti_(3)C_(2)T_(x)fibers.The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti_(3)C_(2)T_(x)fibers with high electrical conductivity for smart textiles,but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.展开更多
基金Supported by the Natural Science Foundation of Hubei Province(2014CFB610)the Excellent Young Innovation Team Project of Hubei Province(T201429)
文摘The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used to acquire the thermal conductivity from heat current auto-correlation function(HCACF). HCACF of the selected BNNR system shows a tendency of a very fast decay and then be followed by a very slow decay process,finally,approaching zero approximately within 3 ps. The convergence of lattice thermal conductivity demonstrates that the thermal conductivity of BNNR can be simulated by EMD simulation using several thousands of atoms with periodic boundary conditions. The results show that BNNR exhibit lower thermal conductivity than that of boron nitride(BN) monolayer,which indicates that phonons boundary scatting significantly suppresses the phonons transport in BNNR. Vacancies in BNNR greatly affect the lattice thermal conductivity,in detail,only 1% concentration of vacancies in BNNR induce a 60% reduction of the lattice thermal conductivity at room temperature.
基金the support from the National Natural Science Foundation of China(52403112,52473083)Natural Science Basic Research Program of Shaanxi(2024JC-TBZC-04)+2 种基金the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Fundamental Research Funds for the Central Universities(D5000240062,D5000240077)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(202410699041)。
文摘High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti_(3)C_(2)T_(x)nanosheets within fibers,which restricts their properties.Herein,a versatile strategy is proposed to construct wet-spun Ti_(3)C_(2)T_(x)fibers,in which trace amounts of borate form strong interlayer crosslinking between Ti_(3)C_(2)T_(x)nanosheets to significantly enhance interactions as supported by density functional theory calculations,thereby reducing interlayer spacing,diminishing microscopic voids and promoting orientation of the nanosheets.The resultant Ti_(3)C_(2)T_(x)fibers exhibit exceptional electrical conductivity of 7781 S cm^(-1)and mechanical properties,including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa.Notably,employing equilibrium molecular dynamics simulations,finite element analysis,and cross-wire geometry method,it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti_(3)C_(2)T_(x)fibers to 13 W m^(-1)K^(-1),marking the first systematic study on thermal conductivity of Ti_(3)C_(2)T_(x)fibers.The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti_(3)C_(2)T_(x)fibers with high electrical conductivity for smart textiles,but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.