Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardseq...Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardsequilibrium (OTE) strategy combined with fuzzy control is presented in this paper to overcome these difficulties. According to the OTE strategy, the control force is designed from the viewpoint of a mechanical relationship between the motions of the structure, the exciting force and the control force. The advantage of the OTE strategy is that it can be used for a variety of control systems. In order to evaluate the performance of the proposed strategy, the seismic performance of a three-story shear building with an Active Tendon System (ATS) using a Fuzzy Logic Controller (FLC) is studied. The main advantage of the fuzzy controller is its inherent robustness and ability to handle any nonlinear behavior of structures. However, there are no design guidelines to set up the corresponding control rule table for a FLC. Based on the proposed strategy for the FLC, a control rule table associated with the building under study is developed, which then allows formation of a detailed algorithm. The results obtained in this study show that the proposed strategy performs slightly better than the linear quadratic regulator (LQR) strategy, while possessing several advantages over the LQR controller. Consequently, the feasibility and validity of the proposed strategy are verified.展开更多
Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this t...Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this theory, a perfect control method should not only guarantee stability of the system, but also ensure the control-equilibrium of the system. To achieve the control-equilibrium, feed-forward control is required.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equili...This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.展开更多
This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. T...This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if so...The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.展开更多
目的:研究阶梯性平衡协调训练对老年髋关节置换术后患者下肢运动功能、髋关节功能的影响。方法:选取2021年10月至2023年10月期间本院收治的96例老年髋关节置换术后患者作为研究对象,采用随机数字表法分为对照组和观察组,各48例。对照组...目的:研究阶梯性平衡协调训练对老年髋关节置换术后患者下肢运动功能、髋关节功能的影响。方法:选取2021年10月至2023年10月期间本院收治的96例老年髋关节置换术后患者作为研究对象,采用随机数字表法分为对照组和观察组,各48例。对照组患者接受常规康复训练,观察组患者接受阶梯性平衡协调训练。对比两组患者髋关节功能、平衡状态、步态功能、术后并发症。结果:干预后,观察组Harris髋关节功能量表(Harris hip function scale,HHS)评分、Berg平衡功能量表(Berg balance function scale,BBS)评分均明显高于对照组(P<0.05);干预3m后,观察组患者的步频、步速、步幅均明显高于对照组(P<0.05)。两组并发症发生率无明显差异(P>0.05)。结论:阶梯性平衡协调训练能够有效改善老年髋关节置换术后患者髋关节功能,提高平衡状态,促进步态功能恢复,且不会加重术后并发症发生。展开更多
基金National Natural Science Foundation of China Under Grants No. 50508003 and No.50478042, and A Municipal New Star Plan Program Approved by Beijing Municipal Science & Technology Commission
文摘Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardsequilibrium (OTE) strategy combined with fuzzy control is presented in this paper to overcome these difficulties. According to the OTE strategy, the control force is designed from the viewpoint of a mechanical relationship between the motions of the structure, the exciting force and the control force. The advantage of the OTE strategy is that it can be used for a variety of control systems. In order to evaluate the performance of the proposed strategy, the seismic performance of a three-story shear building with an Active Tendon System (ATS) using a Fuzzy Logic Controller (FLC) is studied. The main advantage of the fuzzy controller is its inherent robustness and ability to handle any nonlinear behavior of structures. However, there are no design guidelines to set up the corresponding control rule table for a FLC. Based on the proposed strategy for the FLC, a control rule table associated with the building under study is developed, which then allows formation of a detailed algorithm. The results obtained in this study show that the proposed strategy performs slightly better than the linear quadratic regulator (LQR) strategy, while possessing several advantages over the LQR controller. Consequently, the feasibility and validity of the proposed strategy are verified.
文摘Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this theory, a perfect control method should not only guarantee stability of the system, but also ensure the control-equilibrium of the system. To achieve the control-equilibrium, feed-forward control is required.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
基金Supported by the National Science Foundation of China(60274056)
文摘This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.
文摘This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.
文摘The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.
文摘目的:研究阶梯性平衡协调训练对老年髋关节置换术后患者下肢运动功能、髋关节功能的影响。方法:选取2021年10月至2023年10月期间本院收治的96例老年髋关节置换术后患者作为研究对象,采用随机数字表法分为对照组和观察组,各48例。对照组患者接受常规康复训练,观察组患者接受阶梯性平衡协调训练。对比两组患者髋关节功能、平衡状态、步态功能、术后并发症。结果:干预后,观察组Harris髋关节功能量表(Harris hip function scale,HHS)评分、Berg平衡功能量表(Berg balance function scale,BBS)评分均明显高于对照组(P<0.05);干预3m后,观察组患者的步频、步速、步幅均明显高于对照组(P<0.05)。两组并发症发生率无明显差异(P>0.05)。结论:阶梯性平衡协调训练能够有效改善老年髋关节置换术后患者髋关节功能,提高平衡状态,促进步态功能恢复,且不会加重术后并发症发生。