Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,p...Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,particularly over the magnetic equator,have been a subject of study for several decades.However,despite the known importance of neutral winds,a comprehensive understanding and characterization of the winds is still lacking.Various ground-based and satellite missions have provided valuable information on the contribution of neutral winds to the global atmospheric dynamics.However,efforts in the global monitoring of neutral winds are still lacking,and the drivers behind the behavior of TNWs as well as their influence on the TIS remain incomplete.To address these knowledge gaps in the global circulation of TNWs,it is crucial to develop a deep understanding of the neutral wind characteristics over different regions.The low-latitude equatorial region in particular has been observed to exert complex influences on TNWs because of the unique effects of the Earth’s magnetic field at the dip equator.Studying neutral winds over this region will provide valuable insights into the unique dynamics and processes that occur in this region,thereby enhancing our understanding of their role in the overall dynamics of the TIS.Additionally,through empirical observations,an improved ability to accurately model and predict the behavior of this region can be achieved.This review article addresses challenges in understanding equatorial winds by reviewing historical measurements,current missions,and the interactions of ionospheric and thermospheric phenomena,emphasizing the need for comprehensive measurements to improve global atmospheric dynamics and weather forecasting.展开更多
In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-hi...In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.展开更多
The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropica...The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.展开更多
An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is deriv...An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation.Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation,and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.展开更多
The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and envi...The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and environment, but also global economic development and human living, and brings about many calamities. Thus there is very attractive study on its rules in the international academic circles. Many scholars made more studies on its local and whole behaviors using different methods, such as self-anamnestic principle, Fokker-Plank Equation method, higher order singular pedigree and predictable study, rapid change on boundary, indeterminate adaptive control, multi-eogradient method and so on. Nonlinear perturbed theory and approximate method are very attractive studies in the international academic circles. Many scholars considered a class of nonlinear problems for the ordinary differential equation, the reaction diffusion equations, the boundary value of elliptic equation, the initial boundary value of hyperbolic equation, the shock layer solution of nonlinear equation and so on. In this paper, a class of perturbed mechanism for the western boundary undercurrents in the equator Pacific is considered. Under suitable conditions, using a homotopic mapping theory and method, we obtain a simple and rapid arbitrary order approximate solution for the corresponding nonlinear system. For example, a special case shows that using the homotopic mapping method, there is a high accuracy for the computed value. It is also provided from the results that the solution for homotopic mapping solving method can be used for analyzing operator for perturbed mechanism of western boundary undercurrents in the equator Pacific.展开更多
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) ...Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.展开更多
By using OLR monthly average data which was observed by American NOAA satellite and 500 hPa ω monthly average data of NCEP reanalysis,the indexes which represented the equatorial longitudinal circulation characterist...By using OLR monthly average data which was observed by American NOAA satellite and 500 hPa ω monthly average data of NCEP reanalysis,the indexes which represented the equatorial longitudinal circulation characteristics were defined. According to the intensity,scope and distribution characteristics of longitudinal circulation in the tropical equator area,the indexes which represented the intensity,position and scope climate characteristics of longitudinal circulation in the equatorial Pacific Ocean were diagnosed and studied. The results showed that the annual variation and interannual variation characteristics of Walker circulation in east-west direction in the equatorial Pacific Ocean were that the intensity and scope existed 5 and 15-16 years oscillatory periods,and the position had 4,12 years oscillatory periods.展开更多
Introduction EQUATOR Network provides unique access to collated expertise and resources for good reporting of health research, The resources are aimed at researchers (authors of research articles), journal editors, ...Introduction EQUATOR Network provides unique access to collated expertise and resources for good reporting of health research, The resources are aimed at researchers (authors of research articles), journal editors, peer reviewers, and developers of reporting guidelines,展开更多
A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theD...A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theDMS flux over sea surface is assigned from gas exchange models that deped on sea surface wind speed and DMS concentration in surface water. Photolysis rates at various altitudes are calculated as a function of Solar zenith angle, andthe radiation calculation includes ozone absorption,surface reflection and molecular scattering.The simulated results of the DMS diurnal cycle are in good agreement with the observations. Sensitivity tests ofthe model indicate that the concentration of the DMS in the marine surface layer appears to be affected by a combination of chemical processes and meteorological conditions. In addition, photochemical processes are rather important.The reaction of the DMS with OH radical, the heterogeneous conversion of SO2 and the deposition of NSS-SO andthe methanesulfonic acid (MSA) are critical factors of controlling the DMS, SO2, NSS-SO and the MSA concentrations and distributions in the atmosphere.The DMS concentration in air is directly proportional to surface windspeed, but it is inversely proportional to boundary layer height in the convective boundary layer. The distributions ofthe DMS concentrations in air are strongly influenced by atmospheric stratification in stable conditions.展开更多
Objective Time-specific litho- and biofacies often holds important information about unique ancient ecosystems that no longer exist on Earth today. This report summarizes one of such time-specific facies--the 3-D net...Objective Time-specific litho- and biofacies often holds important information about unique ancient ecosystems that no longer exist on Earth today. This report summarizes one of such time-specific facies--the 3-D network structure of the Upper Ordovician Pagoda Formation in South China, as investigated by Zhan et al. (Palaeogeography, Palaeocli-matology, Palaeoecology, DOI: 10.1016/j.palaeo.2015.07.039).展开更多
Critical frequency foF2 long-term trends at Dakar station (14.4°N, 342.74°E) located near the crest of the equatorial ionization anomaly EIA, are analysed taking into account geomagnetic activity, increasing...Critical frequency foF2 long-term trends at Dakar station (14.4°N, 342.74°E) located near the crest of the equatorial ionization anomaly EIA, are analysed taking into account geomagnetic activity, increasing greenhouse gases concentration and Earth’s magnetic field secular variation. After filtering solar activity effect using F10.7 as a solar activity proxy, we determined the relative residual trends slopes <i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> values for three different levels of geomagnetic activity. For example, at 1200 LT, the value of </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> goes from -</span><span>0</span><span style="font-family:Verdana;">.27%/year for very magnetically quiet days to <span style="font-family:Verdana;white-space:normal;">-</span>0.19%/year for magnetically quiet days and to <span style="font-family:Verdana;white-space:normal;">-</span>0.13%/year for all days. It appears from the slopes </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> obtained, that they increase with the level of geomagnetic activity and their negative values are qualitatively consistent with the expected decreasing trend due to the increase in greenhouse gases concentration but are greater than 0.003%/year which would result from a 20% increase in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emissions which actually took place during the analysis period. Regarding Earth’s magnetic field magnitude, B secular variation and the dip equator secular movement</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> Dakar station is located near the crest of the equatorial ionization anomaly, Earth’s magnetic field magnitude, B decreases there and the trough approaches the position of Dakar during the period of analysis. These two phenomena induce a decrease in foF2 which is in agreement with the decreasing trend observed at this station.</span>展开更多
A simple shallow-water model with influence of external forcing on a β-planeis applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By theperturbation method, the extended variable-coefficien...A simple shallow-water model with influence of external forcing on a β-planeis applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By theperturbation method, the extended variable-coefficient KdV equation under an external forcing isderived for large amplitude equatorial Rossby wave in a shear How. And then various periodic-likestructures for these equatorial Rossby waves are obtained with the help of Jacobi ellipticfunctions. It is shown that the external forcing plays an important role in various periodic-likestructures.展开更多
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections...Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
Seasonal variability of the bifurcation of the North Equatorial Current (NEC) is studied by constructing the analytic solu- tion for the time-dependent horizontal linear shallow water quasi-geostrophic equations. Us...Seasonal variability of the bifurcation of the North Equatorial Current (NEC) is studied by constructing the analytic solu- tion for the time-dependent horizontal linear shallow water quasi-geostrophic equations. Using the Florida State University wind data from 1961 through 1992, we find that the bifurcation latitude of the NEC changes with seasons. Furthermore, it is shown that the NEC bifurcation is at its southernmost latitude (12.7°N) in June and the northernmost latitude (14.4~ N) in November.展开更多
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ...Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.展开更多
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e...The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.展开更多
基金the Ministry of Higher Education(KPT)Malaysia for the MyBrainSc program.Idahwati Sarudin was supported by Universiti Sains Malaysia through a Short-Term Grant(Project No.304/PFIZIK/6315730)Nurul Shazana Abdul Hamid received funding from Universiti Kebangsaan Malaysia for funding this work through a University Research Grant(Grant No.GUP-2023-048)。
文摘Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,particularly over the magnetic equator,have been a subject of study for several decades.However,despite the known importance of neutral winds,a comprehensive understanding and characterization of the winds is still lacking.Various ground-based and satellite missions have provided valuable information on the contribution of neutral winds to the global atmospheric dynamics.However,efforts in the global monitoring of neutral winds are still lacking,and the drivers behind the behavior of TNWs as well as their influence on the TIS remain incomplete.To address these knowledge gaps in the global circulation of TNWs,it is crucial to develop a deep understanding of the neutral wind characteristics over different regions.The low-latitude equatorial region in particular has been observed to exert complex influences on TNWs because of the unique effects of the Earth’s magnetic field at the dip equator.Studying neutral winds over this region will provide valuable insights into the unique dynamics and processes that occur in this region,thereby enhancing our understanding of their role in the overall dynamics of the TIS.Additionally,through empirical observations,an improved ability to accurately model and predict the behavior of this region can be achieved.This review article addresses challenges in understanding equatorial winds by reviewing historical measurements,current missions,and the interactions of ionospheric and thermospheric phenomena,emphasizing the need for comprehensive measurements to improve global atmospheric dynamics and weather forecasting.
基金This study was supported in part by National Natural Science Foundation of China
文摘In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.
基金sponsored by the National Program on Key Basic Research Project(973 Program) under Grant No.2009CB421500the National Natural Science Foundation of China under Grant No.40675026.
文摘The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.
基金The National Natural Science Foundation of China under contract No.11762011the Natural Science Foundation of Inner Mongolia Autonomous Region under contract No.2020BS01002+1 种基金the Research Program of Science at Universities of Inner Mongolia Autonomous Region under contract No.NJZY20003the Scientific Starting Foundation of Inner Mongolia University under contract No.21100-5185105
文摘An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation.Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation,and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.
基金Under the auspices of the National Natural Science Foundation of China (No. 40576012, No. 40676016, No. 10471039), the State Key Program for Basic Research of China (No. 2003CB415101-03, No. 2004CB418304), the Key Project of the Chinese Academy of Sciences (No. KZCX3-SW-221), E-Institutes of Shanghai Municipal Education Commission (No. N.E03004)
文摘The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and environment, but also global economic development and human living, and brings about many calamities. Thus there is very attractive study on its rules in the international academic circles. Many scholars made more studies on its local and whole behaviors using different methods, such as self-anamnestic principle, Fokker-Plank Equation method, higher order singular pedigree and predictable study, rapid change on boundary, indeterminate adaptive control, multi-eogradient method and so on. Nonlinear perturbed theory and approximate method are very attractive studies in the international academic circles. Many scholars considered a class of nonlinear problems for the ordinary differential equation, the reaction diffusion equations, the boundary value of elliptic equation, the initial boundary value of hyperbolic equation, the shock layer solution of nonlinear equation and so on. In this paper, a class of perturbed mechanism for the western boundary undercurrents in the equator Pacific is considered. Under suitable conditions, using a homotopic mapping theory and method, we obtain a simple and rapid arbitrary order approximate solution for the corresponding nonlinear system. For example, a special case shows that using the homotopic mapping method, there is a high accuracy for the computed value. It is also provided from the results that the solution for homotopic mapping solving method can be used for analyzing operator for perturbed mechanism of western boundary undercurrents in the equator Pacific.
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2012CB417401,2013CB956202)the Major Project of National Natural Science Foundation of China(No.40890151)
文摘Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.
文摘By using OLR monthly average data which was observed by American NOAA satellite and 500 hPa ω monthly average data of NCEP reanalysis,the indexes which represented the equatorial longitudinal circulation characteristics were defined. According to the intensity,scope and distribution characteristics of longitudinal circulation in the tropical equator area,the indexes which represented the intensity,position and scope climate characteristics of longitudinal circulation in the equatorial Pacific Ocean were diagnosed and studied. The results showed that the annual variation and interannual variation characteristics of Walker circulation in east-west direction in the equatorial Pacific Ocean were that the intensity and scope existed 5 and 15-16 years oscillatory periods,and the position had 4,12 years oscillatory periods.
文摘Introduction EQUATOR Network provides unique access to collated expertise and resources for good reporting of health research, The resources are aimed at researchers (authors of research articles), journal editors, peer reviewers, and developers of reporting guidelines,
文摘A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theDMS flux over sea surface is assigned from gas exchange models that deped on sea surface wind speed and DMS concentration in surface water. Photolysis rates at various altitudes are calculated as a function of Solar zenith angle, andthe radiation calculation includes ozone absorption,surface reflection and molecular scattering.The simulated results of the DMS diurnal cycle are in good agreement with the observations. Sensitivity tests ofthe model indicate that the concentration of the DMS in the marine surface layer appears to be affected by a combination of chemical processes and meteorological conditions. In addition, photochemical processes are rather important.The reaction of the DMS with OH radical, the heterogeneous conversion of SO2 and the deposition of NSS-SO andthe methanesulfonic acid (MSA) are critical factors of controlling the DMS, SO2, NSS-SO and the MSA concentrations and distributions in the atmosphere.The DMS concentration in air is directly proportional to surface windspeed, but it is inversely proportional to boundary layer height in the convective boundary layer. The distributions ofthe DMS concentrations in air are strongly influenced by atmospheric stratification in stable conditions.
基金supported by the National Natural Science Foundation of China(grant No.41521061, 41290260)the State Key Laboratory of Paleobiology and Stratigraphy(LPS)
文摘Objective Time-specific litho- and biofacies often holds important information about unique ancient ecosystems that no longer exist on Earth today. This report summarizes one of such time-specific facies--the 3-D network structure of the Upper Ordovician Pagoda Formation in South China, as investigated by Zhan et al. (Palaeogeography, Palaeocli-matology, Palaeoecology, DOI: 10.1016/j.palaeo.2015.07.039).
文摘Critical frequency foF2 long-term trends at Dakar station (14.4°N, 342.74°E) located near the crest of the equatorial ionization anomaly EIA, are analysed taking into account geomagnetic activity, increasing greenhouse gases concentration and Earth’s magnetic field secular variation. After filtering solar activity effect using F10.7 as a solar activity proxy, we determined the relative residual trends slopes <i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> values for three different levels of geomagnetic activity. For example, at 1200 LT, the value of </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> goes from -</span><span>0</span><span style="font-family:Verdana;">.27%/year for very magnetically quiet days to <span style="font-family:Verdana;white-space:normal;">-</span>0.19%/year for magnetically quiet days and to <span style="font-family:Verdana;white-space:normal;">-</span>0.13%/year for all days. It appears from the slopes </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> obtained, that they increase with the level of geomagnetic activity and their negative values are qualitatively consistent with the expected decreasing trend due to the increase in greenhouse gases concentration but are greater than 0.003%/year which would result from a 20% increase in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emissions which actually took place during the analysis period. Regarding Earth’s magnetic field magnitude, B secular variation and the dip equator secular movement</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> Dakar station is located near the crest of the equatorial ionization anomaly, Earth’s magnetic field magnitude, B decreases there and the trough approaches the position of Dakar during the period of analysis. These two phenomena induce a decrease in foF2 which is in agreement with the decreasing trend observed at this station.</span>
文摘A simple shallow-water model with influence of external forcing on a β-planeis applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By theperturbation method, the extended variable-coefficient KdV equation under an external forcing isderived for large amplitude equatorial Rossby wave in a shear How. And then various periodic-likestructures for these equatorial Rossby waves are obtained with the help of Jacobi ellipticfunctions. It is shown that the external forcing plays an important role in various periodic-likestructures.
基金Project supported by the National Science Foundation (No.DMS-0604947)
文摘Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 40890154, 40890153)the National Basic Research Development Program of China (973 Program, Grant No. 2005CB321700)
文摘Seasonal variability of the bifurcation of the North Equatorial Current (NEC) is studied by constructing the analytic solu- tion for the time-dependent horizontal linear shallow water quasi-geostrophic equations. Using the Florida State University wind data from 1961 through 1992, we find that the bifurcation latitude of the NEC changes with seasons. Furthermore, it is shown that the NEC bifurcation is at its southernmost latitude (12.7°N) in June and the northernmost latitude (14.4~ N) in November.
基金Supported by the Development and Application Project of Ship CAE Software.
文摘Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961059,1210502)the University Innovation Project of Gansu Province(Grant No.2023B-062)the Gansu Province Basic Research Innovation Group Project(Grant No.23JRRA684).
文摘The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.