In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρ...In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e...The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.展开更多
The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic sol...The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.展开更多
The basic sets of solutions in classH(orH*)for the characteristic equation and its adjoint equation with Hilbert kernel are given respectively.Thus the expressions of solutions and its solvable conditions are simplifi...The basic sets of solutions in classH(orH*)for the characteristic equation and its adjoint equation with Hilbert kernel are given respectively.Thus the expressions of solutions and its solvable conditions are simplified.On this basis the solutions and the solvable conditions in classH_(1)as well as the generalized Noether theorem for the complete equation are obtained.展开更多
The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero ...The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero directly at present. However, according to the theory of differential equation, the integral constant should be determined by the known boundary conditions of spherical surface, in stead of the metric at the spherical center. By considering that fact that the volumes of three dimensional hollow and solid spheres in curved space are different from that in flat space, the integral constants are proved to be nonzero. The results indicate that no matter what the masses and densities of hollow sphere and solid sphere are, there exist space-time singularities at the centers of hollow sphere and solid spheres. Meanwhile, the intensity of pressure at the center point of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called black hole. At the center and its neighboring region of solid sphere, pressure intensities become negative values. There may be a region for hollow sphere in which pressure intensities may become negative values too. The common hollow and solid spheres in daily live can not have such impenetrable characteristics. The results only indicate that the singularity black holes predicated by general relativity are caused by the descriptive method of curved space-time actually. If black holes exist really in the universe, they can only be the Newtonian black holes, not the Einstein’s black holes. The results revealed in the paper are consistent with the Hawking theorem of singularity actually. They can be considered as the practical examples of the theorem.展开更多
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic...Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.展开更多
In this paper we consider the asymptotic expression of the solution of the Cauchy’sproblem for a higher order equation when the limit equation has singularity. In orderto construct the asymptotic expression of the so...In this paper we consider the asymptotic expression of the solution of the Cauchy’sproblem for a higher order equation when the limit equation has singularity. In orderto construct the asymptotic expression of the solution, the region is divided into threesub-areas. In every small region, the solution of the differential equation is different.展开更多
This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods a...This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods and Poincaré-Bohl theorem, we obtain the existence of harmonic solutions of the given equation under a kind of nonresonance condition for the time map.展开更多
When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinit...When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinitial 0 are the first part of this manuscript. Then the resolution is alluded to by work from Muller and Lousto, as to implications of entanglement entropy. We present entanglement entropy in the early universe with a steadily shrinking scale factor, due to work from Muller and Lousto, and show that there are consequences due to initial entanged Sentropy=0.3rH2/a2 for a time dependent horizon radius rH in cosmology, with for flat space conditions rH= for conformal time. In the case of a curved, but not flat space version of entropy, we look at vacuum energy as proportional to the inverse of scale factor squared times the inverse of initial entropy, effectively when there is no initial time in line with ~H2/G H≈a-1. The consequences for this initial entropy being entangled are elaborated in this manuscript. No matter how small the length gets, Sentropy if it is entanglement entropy, will not go to zero. The requirement is that the smallest length of time, t, re scaled does not go to zero. Even if the length goes to zero. This preserves a minimum non zero vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial 0.展开更多
When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit ...When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.展开更多
In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity an...In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).展开更多
We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of ...We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of the Penrose singularity theorem, the definition of trapped surfaces, and the derivation of the theorem itself.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,u...In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.展开更多
In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansio...In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.展开更多
This paper investigates the self-similar singular solution of the p-Laplacian evolution equation with the nonlinear gradient absorption terms u t=div(u p-2u)-uq for 1<p<2 and q>in Rn× (0, ∞). It has ...This paper investigates the self-similar singular solution of the p-Laplacian evolution equation with the nonlinear gradient absorption terms u t=div(u p-2u)-uq for 1<p<2 and q>in Rn× (0, ∞). It has been proved that when 1<q<p-n/(n+1) there exists a unique self-similar very singular solution.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
基金supported by the Technological Innovation Talents in Universities and Colleges in Henan Province(No.21HASTIT025)the Natural Science Foundation of Henan Province(No.222300420449)the Innovative Research Team of Henan Polytechnic University(No.T2022-7)。
文摘In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961059,1210502)the University Innovation Project of Gansu Province(Grant No.2023B-062)the Gansu Province Basic Research Innovation Group Project(Grant No.23JRRA684).
文摘The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.
基金Supported by the National Natural Science Foundation of China(19971064)Ziqiang Invention Foundation of Wuhan University(201990336)
文摘The basic sets of solutions in classH(orH*)for the characteristic equation and its adjoint equation with Hilbert kernel are given respectively.Thus the expressions of solutions and its solvable conditions are simplified.On this basis the solutions and the solvable conditions in classH_(1)as well as the generalized Noether theorem for the complete equation are obtained.
文摘The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero directly at present. However, according to the theory of differential equation, the integral constant should be determined by the known boundary conditions of spherical surface, in stead of the metric at the spherical center. By considering that fact that the volumes of three dimensional hollow and solid spheres in curved space are different from that in flat space, the integral constants are proved to be nonzero. The results indicate that no matter what the masses and densities of hollow sphere and solid sphere are, there exist space-time singularities at the centers of hollow sphere and solid spheres. Meanwhile, the intensity of pressure at the center point of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called black hole. At the center and its neighboring region of solid sphere, pressure intensities become negative values. There may be a region for hollow sphere in which pressure intensities may become negative values too. The common hollow and solid spheres in daily live can not have such impenetrable characteristics. The results only indicate that the singularity black holes predicated by general relativity are caused by the descriptive method of curved space-time actually. If black holes exist really in the universe, they can only be the Newtonian black holes, not the Einstein’s black holes. The results revealed in the paper are consistent with the Hawking theorem of singularity actually. They can be considered as the practical examples of the theorem.
基金Project supported by the National Natural Science Foundation of China (Nos.40175014, 90411006)the Science Foundation of Shanghai Municipal Commission of Science and Technology(No.02DJ14032)
文摘Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.
文摘In this paper we consider the asymptotic expression of the solution of the Cauchy’sproblem for a higher order equation when the limit equation has singularity. In orderto construct the asymptotic expression of the solution, the region is divided into threesub-areas. In every small region, the solution of the differential equation is different.
文摘This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods and Poincaré-Bohl theorem, we obtain the existence of harmonic solutions of the given equation under a kind of nonresonance condition for the time map.
文摘When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinitial 0 are the first part of this manuscript. Then the resolution is alluded to by work from Muller and Lousto, as to implications of entanglement entropy. We present entanglement entropy in the early universe with a steadily shrinking scale factor, due to work from Muller and Lousto, and show that there are consequences due to initial entanged Sentropy=0.3rH2/a2 for a time dependent horizon radius rH in cosmology, with for flat space conditions rH= for conformal time. In the case of a curved, but not flat space version of entropy, we look at vacuum energy as proportional to the inverse of scale factor squared times the inverse of initial entropy, effectively when there is no initial time in line with ~H2/G H≈a-1. The consequences for this initial entropy being entangled are elaborated in this manuscript. No matter how small the length gets, Sentropy if it is entanglement entropy, will not go to zero. The requirement is that the smallest length of time, t, re scaled does not go to zero. Even if the length goes to zero. This preserves a minimum non zero vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial 0.
文摘When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.
文摘In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).
文摘We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of the Penrose singularity theorem, the definition of trapped surfaces, and the derivation of the theorem itself.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.
文摘In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.
基金TheKeyProjectofChineseMinistryofEducation (No .10 40 90 ) .
文摘This paper investigates the self-similar singular solution of the p-Laplacian evolution equation with the nonlinear gradient absorption terms u t=div(u p-2u)-uq for 1<p<2 and q>in Rn× (0, ∞). It has been proved that when 1<q<p-n/(n+1) there exists a unique self-similar very singular solution.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.